18.∵DE = BE =.BD =. 查看更多

 

題目列表(包括答案和解析)

如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設Q為AE的中點,證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問中,作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設平面PCD的法向量,

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運用。

(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求證:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD內 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二問中解:取PD的中點E,連接CE、BE,

為正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內的射影,

∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進而求解。

 

查看答案和解析>>

如圖1,在中,,D,E分別為AC,AB的中點,點F為線段CD上的一點,將沿DE折起到的位置,使,如圖2.

(Ⅰ)求證:DE∥平面

(Ⅱ)求證:

(Ⅲ)線段上是否存在點Q,使?說明理由。

【解析】(1)∵DE∥BC,由線面平行的判定定理得出

(2)可以先證,得出,∵

(3)Q為的中點,由上問,易知,取中點P,連接DP和QP,不難證出,,又∵

 

查看答案和解析>>


同步練習冊答案