已知函數(shù)的圖象都過(guò).且在點(diǎn)P處有相同的切線. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(1)求實(shí)數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(1)求實(shí)數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(1)求實(shí)數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5。

(1)求實(shí)數(shù)b,c的值;

(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;

(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍。

 

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學(xué)公式和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(1)求實(shí)數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1―4DBAB  5―8CBAD

二、填空題(本大題共6小題,每小題5分,有兩空的小題,第一空3分,第二空2分,共30分)

20090508

10.                         

11.36                 

12.   

13.56 

14.

       注:兩個(gè)空的填空題第一個(gè)空填對(duì)得3分,第二個(gè)空填對(duì)得2分。

三、解答題(本大題共6小題,共80分)

15.(本小題共13分)

       解:(1)依題意函數(shù)

       有

       故   4分

   (2)由

       原不等式等價(jià)于   6分

       當(dāng)時(shí),    8分

       當(dāng)時(shí),   10分

       當(dāng)時(shí),

       此時(shí)不等式組無(wú)解    12分

       所以,當(dāng)時(shí),不等式的解集為

       當(dāng)時(shí),不等式的解集為

       當(dāng)時(shí),不等式的解集為空集。     13分

16.(本小題滿分13分)

       解:(1)由

          4分

      

          6分

       所以   8分

       又由

       得

       故單調(diào)遞減區(qū)間是

          10

   (2)由

       故   12分

       又

       得    12分

       所以   13分

17.(本小題滿分14分)

       *為BD中點(diǎn),E為PD中點(diǎn),

           3分

       平面AEC,PB平面AEC,

       PB//平面AEC。   6分

   (2)解法一:取AD中點(diǎn)L,

過(guò)L作于K,連結(jié)EK,EL,

       *L為AD中點(diǎn),

       EL//PA,

       *LK為EK在平面ABCD內(nèi)的射影。

       又

       為二面角E―AC―D的平面角     10分

       在

      

      

       設(shè)正方形邊長(zhǎng)為2,

       則   12分

       在

       二面角E―AC―D的大小為   14分

 

 

 

 

       解法二:

   (2)如圖,以A為坐標(biāo)原點(diǎn),AB,AD,AP所在直線分別為

<button id="fgxrj"></button>
      <sup id="fgxrj"><i id="fgxrj"></i></sup>

             由,設(shè)正方形邊長(zhǎng)為2,

      (0,0,0),(2,0,0),(2,2,0),

             (0,2,0),P(0,0,2),E(0,1,1)10分

             ∵⊥平面,

             ∴是平面的法向量,=(0,0,2),

             設(shè)面AEC的法向量為

            

             則

             令,則(1,-1,1)                                                                      12分

             =

             ∴二面角的大小為arccos。                                                   14分

      18.(本小題滿分13分)

           解:(1),                                                       2分

             根據(jù)題意有                                                                                4分

             解得                                                                             6分

         (2)由(1)知

             則                                                                       7分

                                                                                                  8分

             令,即解得                               11分

             令,即解得             

             當(dāng)在[-3,0]內(nèi)變化時(shí),的變化情況如下:

      -3

      (-3,-2)

      -2

      (-2,0)

      0

      +

      +

      0

      -

      -

      -10

      極大值

      -16

             當(dāng)時(shí),有最小值-16;當(dāng)時(shí),有最大值0                    13分

      19.(本小題滿分13分)

           解:(1)恰用3發(fā)子彈就將油罐引爆記為事件A,則

             即恰用3發(fā)子彈將油罐引爆的概率為                                                         6分

         (2)記“油罐被引爆”的事件為事件B,其對(duì)立事件為

             則                                                           10分

             故

             即油罐被引爆的概率為                                                                            13分

      20.(本小題滿分14分)

           解:(1)由的橫坐標(biāo)成以為首項(xiàng),-1為公差的等差數(shù)列

             故。                                             3分

             又位于函數(shù)的圖象上,

             所以                                            5分

             所求點(diǎn)的坐標(biāo)為                                                 6分

         (2)證明:由題意可設(shè)拋物線的方程為

             即

             由拋物線過(guò)電,于是又

             由此可得                                                       9分

             故

             所以,                       11分

             于是

            

            

             故                                        14分

       

       

       

       

       

       


      同步練習(xí)冊(cè)答案