題目列表(包括答案和解析)
已知橢圓=1(其中a>b>0)與直線x+y=1交于P、Q兩點(diǎn),且OP⊥OQ,其中O為坐標(biāo)原點(diǎn).
(1)求的值;
(2)若橢圓的離心率e滿足≤e≤,求橢圓長(zhǎng)軸的取值范圍.
探究:本題涉及直線與橢圓的交點(diǎn),對(duì)于此類問題往往聯(lián)立它們的方程消去其中的一個(gè)未知數(shù),再利用根與系數(shù)間的關(guān)系,從而得到相應(yīng)的兩個(gè)交點(diǎn)的坐標(biāo)間的關(guān)系,再結(jié)合題目中的其它條件將問題解決.
如圖,分別是橢圓:+=1()的左、右焦點(diǎn),是橢圓的頂點(diǎn),是直線與橢圓的另一個(gè)交點(diǎn),=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40,求的值.
【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。
(Ⅱ)因△的面積為40,設(shè),又面積公式,又直線,
又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。
求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
已知過點(diǎn)的動(dòng)直線與拋物線相交于兩點(diǎn).當(dāng)直線的斜率是時(shí),.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
【解析】(1)B,C,當(dāng)直線的斜率是時(shí),
的方程為,即 (1’)
聯(lián)立 得, (3’)
由已知 , (4’)
由韋達(dá)定理可得G方程為 (5’)
(2)設(shè):,BC中點(diǎn)坐標(biāo)為 (6’)
得 由得 (8’)
BC中垂線為 (10’)
(11’)
過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).
(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
(2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com