它的特征值為和.對應的特征向量為及, 查看更多

 

題目列表(包括答案和解析)

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

矩陣與變換
若矩陣A有特征值λ1=3,λ2=-1,它們所對應的特征向量分別為e1=
1
0
e2=
1
2
,求矩陣A.

查看答案和解析>>

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點的橫坐標都縮短為原來的一半(縱坐標不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C′2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
設函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

(1)已知矩陣A=
33
24
,向量β=
6
8

(Ⅰ)求矩陣A的特征值和對應的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點A、B的極坐標分別為(1,0)、(1,
π
2
)
,曲線C的參數(shù)方程為
x=rcosα
y=rsinα
為參數(shù),r>0)
(Ⅰ)求直線AB的直角坐標方程;
(Ⅱ)若直線AB和曲線C只有一個交點,求r的值.
(3)設不等式|x-2|>1的解集與關于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值時x的值.

查看答案和解析>>


同步練習冊答案