(C)3 (D)4 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)是R上偶函數(shù),對于x∈R都有f(x+6)=f(x)+f(3)成立,f(x)在區(qū)間[0,3]上是增函數(shù),則f(x)在[-9,9]上零點個數(shù)是( 。

查看答案和解析>>

(2011•武昌區(qū)模擬)(
x
+
3x
)12
的展開式中有理項共有( 。

查看答案和解析>>

3、程序中,輸出時A的值是輸入時A的值的( 。

查看答案和解析>>

給出下列命題:①存在實數(shù)x,使得sinx+cosx=
π
3
;②函數(shù)y=sinx的圖象向右平移
π
4
個單位,得到y=sin(2x+
π
4
)
的圖象;③函數(shù)y=sin(
2
3
x-
7
2
π)
是偶函數(shù);④已知α,β是銳角三角形ABC的兩個內角,則sinα>cosβ.其中正確的命題的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

如圖,下面的四個容器高度都相同,將水從容器頂部一個孔中以相同的速度注入其中,注滿為止.用下面對應的圖象顯示該容器中水面的高度h和時間t之間的關系,其中正確的有(  )

查看答案和解析>>

        2009.4

         

        1-10.CDABB   CDBDA

        11.       12. 4        13.        14.       15.  

        16.   17.

        18.解:(Ⅰ)由題意,有,

        .…………………………5分

        ,得

        ∴函數(shù)的單調增區(qū)間為 .……………… 7分

        (Ⅱ)由,得

        .           ……………………………………………… 10分

        ,∴.      ……………………………………………… 14分

        19.解:(Ⅰ)設數(shù)列的公比為,由,.             …………………………………………………………… 4分

        ∴數(shù)列的通項公式為.      ………………………………… 6分

        (Ⅱ) ∵,    ,      ①

        .      ②         

        ①-②得: …………………12分

                     得,                           …………………14分

        20.解:(I)取中點,連接.

        分別是梯形的中位線

        ,又

        ∴面,又

        .……………………… 7分

        (II)由三視圖知,是等腰直角三角形,

             連接

             在面AC1上的射影就是,∴

            

        ∴當的中點時,與平面所成的角

          是.           ………………………………14分

                                                       

        21.解:(Ⅰ)由題意:.

        為點M的軌跡方程.     ………………………………………… 4分

        (Ⅱ)由題易知直線l1l2的斜率都存在,且不為0,不妨設,MN方程為 聯(lián)立得:,設6ec8aac122bd4f6e

            ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

               同理RQ的方程為,求得.  ………………………… 9分

        .  ……………………………… 13分

        當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

        22. 解:(Ⅰ),由題意得,

        所以                    ………………………………………………… 4分

        (Ⅱ)證明:令,,

        得:……………………………………………… 7分

        (1)當時,,在,即上單調遞增,此時.

                  …………………………………………………………… 10分

        (2)當時,,在,在,在,即上單調遞增,在上單調遞減,在上單調遞增,或者,此時只要或者即可,得,

        .                        …………………………………………14分

        由 (1) 、(2)得 .

        ∴綜上所述,對于,使得成立. ………………15分

         


        同步練習冊答案