0.2 查看更多

 

題目列表(包括答案和解析)

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

              20090508

              (2)設(shè),則,

              由正弦定理:,

              所以兩個(gè)正三角形的面積和,…………8分

              ……………10分

              所以:………………………………………………………………12分

              18.解:(1);……………………6分

              (2)消費(fèi)總額為1500元的概率是:……………………7分

              消費(fèi)總額為1400元的概率是:………8分

              消費(fèi)總額為1300元的概率是:

              ,…11分

              所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

              19.(1)證明:因?yàn)?sub>,所以平面,

              又因?yàn)?sub>,

              平面

              平面平面;…………………4分

              (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

              過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面,

              所以的長(zhǎng)為所求,………………………………………………………………………6分

              因?yàn)?sub>,所以為二面角的平面角,,

              =1,

              點(diǎn)到平面的距離等于1;…………………………………………………………8分

              (3)連接,由平面,得到

              所以是二面角的平面角,

              ,…………………………………………………………………11分

              二面角大小是。……12分

              20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

              ,

              解得,所以,…………………3分

              所以,

              所以;…………………………………………………………………6分

              (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

              當(dāng)且僅當(dāng)時(shí),取得最小值,

              則:,

              所以,即的取值范圍是。………………………………………12分

              21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

              因?yàn)?sub>,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

              (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

              假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為

               

              …………………………………………7分

              弦長(zhǎng)為定值,則,即,

              此時(shí),……………………………………………………9分

              所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為,

                  當(dāng)時(shí),不存在滿足條件的直線!12分

              22.解:(1),

              ,……2分

              ,

              因?yàn)楫?dāng)時(shí)取得極大值,所以,

              所以的取值范圍是:;………………………………………………………4分

              (2)由下表:

              0

              0

              遞增

              極大值

              遞減

              極小值

              遞增

              ………………………7分

              畫出的簡(jiǎn)圖:

              依題意得:

              解得:,

              所以函數(shù)的解析式是:

              ;……9分

              (3)對(duì)任意的實(shí)數(shù)都有

              依題意有:函數(shù)在區(qū)間

              上的最大值與最小值的差不大于,

              ………10分

              在區(qū)間上有:

              ,

              的最大值是,

              的最小值是,……13分

              所以

              的最小值是!14分

               

               


              同步練習(xí)冊(cè)答案