(3)證明:. 查看更多

 

題目列表(包括答案和解析)

(2013•眉山一模)已知函數(shù)f(x)=lnx-kx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明:
n
i=2
lni
i+1
n(n-1)
4
(n∈N+,n>1).

查看答案和解析>>

已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的所有棱長都相等,且側(cè)棱垂直于底面,由B沿棱柱側(cè)面經(jīng)過棱C C1到點(diǎn)A1的最短路線長為2
5
,設(shè)這條最短路線與CC1的交點(diǎn)為D.
(1)求三棱柱ABC-A1B1C1的體積;
(2)在平面A1BD內(nèi)是否存在過點(diǎn)D的直線與平面ABC平行?證明你的判斷;
(3)證明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=1
(1)求f(x),g(x)的解析式. 
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)的奇偶性.
(3)證明函數(shù)S(x)=xf(x)+g(
12
)在(0,+∞)
上是增函數(shù).

查看答案和解析>>

已知函數(shù)f(x)=x3-x2+
x
2
+
1
4
,且存在x0∈(0,
1
2
),使f(x0)=x0
(1)證明:f(x)是R上的單調(diào)增函數(shù);
(2)設(shè)x1=0,xn+1=f(xn);y1=
1
2
,yn+1=f(yn),其中n=1,2,…,證明:xn<xn+1<x0<yn+1<yn;
(3)證明:
yn+1-xn+1
yn-xn
1
2

查看答案和解析>>

1、B  2、B  3、D  4、D  5、A   6、D   7、B  8、C  9、A  10、B

11、12、13、14、15、16、-,0

17. 解:(1)∵,

,∴,∴,

!.6分

(2)∵

,

,

,∴,∴,∴…….12分

18、的所有可能取值有6,2,1,-2;,

,

的分布列為:

6

2

1

-2

0.63

0.25

0.1

0.02

 

(2)

(3)設(shè)技術(shù)革新后的三等品率為,則此時(shí)1件產(chǎn)品的平均利潤為

依題意,,即,解得 所以三等品率最多為

19、(Ⅰ)證明:因?yàn)?sub>所以′(x)=x2+2x,

   

 

 

x

(-∞,-2)

-2

(-2,0)

0

(0,+∞)

f′(x)

+

0

-

0

+

f(x)

極大值

極小值

 

 

 

 

 

 

 

由點(diǎn)在函數(shù)y=f′(x)的圖象上,

    又所以

    所以,又因?yàn)?sub>′(n)=n2+2n,所以,

    故點(diǎn)也在函數(shù)y=f′(x)的圖象上.

(Ⅱ)解:,

.

當(dāng)x變化時(shí),?的變化情況如下表:

注意到,從而

①當(dāng),此時(shí)無極小值;

②當(dāng)的極小值為,此時(shí)無極大值;

③當(dāng)既無極大值又無極小值.

 

20、(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.

因?yàn)?nbsp;     E為BC的中點(diǎn),所以AE⊥BC.

     又   BC∥AD,因此AE⊥AD.

因?yàn)镻A⊥平面ABCD,AE平面ABCD,所以PA⊥AE.

而    PA平面PAD,AD平面PAD 且PA∩AD=A,

所以  AE⊥平面PAD,又PD平面PAD.

所以 AE⊥PD.

 

(Ⅱ)解:設(shè)AB=2,H為PD上任意一點(diǎn),連接AH,EH.

由(Ⅰ)知   AE⊥平面PAD,

則∠EHA為EH與平面PAD所成的角.

在Rt△EAH中,AE=,

所以  當(dāng)AH最短時(shí),∠EHA最大,

即     當(dāng)AH⊥PD時(shí),∠EHA最大.

此時(shí)    tan∠EHA=

因此   AH=.又AD=2,所以∠ADH=45°,

所以    PA=2.

解法一:因?yàn)?nbsp;  PA⊥平面ABCD,PA平面PAC,

        所以   平面PAC⊥平面ABCD.

        過E作EO⊥AC于O,則EO⊥平面PAC,

        過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,

       在Rt△AOE中,EO=AE?sin30°=,AO=AE?cos30°=,

       又F是PC的中點(diǎn),在Rt△ASO中,SO=AO?sin45°=,

       又    

       在Rt△ESO中,cos∠ESO=

       即所求二面角的余弦值為

21、(Ⅰ)解:依題設(shè)得橢圓的方程為,

直線的方程分別為,.??????????????????????????????????? 2分

如圖,設(shè),其中,

滿足方程,

.①

,得;

上知,得

所以,

化簡得

解得.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)解法一:根據(jù)點(diǎn)到直線的距離公式和①式知,點(diǎn)的距離分別為,

.??????????????????????????????????????????????????? 9分

,所以四邊形的面積為

,

當(dāng),即當(dāng)時(shí),上式取等號.所以的最大值為.?????????????????????? 12分

解法二:由題設(shè),,

設(shè),,由①得,

故四邊形的面積為

????????????????????????????????????????????????????????????????????????????????????????????? 9分

當(dāng)時(shí),上式取等號.所以的最大值為.     12分

22、解法一:(Ⅰ),,

,是以為首項(xiàng),為公比的等比數(shù)列.

,

(Ⅱ)由(Ⅰ)知

,原不等式成立.

(Ⅲ)由(Ⅱ)知,對任意的,有

,

原不等式成立.

解法二:(Ⅰ)同解法一.

(Ⅱ)設(shè),

,

當(dāng)時(shí),;當(dāng)時(shí),,

當(dāng)時(shí),取得最大值

原不等式成立.

(Ⅲ)同解法一.

 

 

 

 


同步練習(xí)冊答案