已知..函數(shù), 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

已知二次函數(shù)同時滿足:①不等式的解集有且只有一個元素;②在定義域內存在,使得不等式成立.

設數(shù)列的前項和,

(1)求數(shù)列的通項公式;

(2)數(shù)列中,令,,求;

(3)設各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù)。令為正整數(shù)),求數(shù)列的變號數(shù).

 

查看答案和解析>>

(本小題滿分13分)已知二次函數(shù)f(x)滿足:①在x=1時有極值;②圖象過點(0,-3),且在該點處的切線與直線2x+y=0平行.

⑴求f(x)的解析式-

⑵求函數(shù)g(x)=f(x2)的單調遞增區(qū)間.

 

查看答案和解析>>

(本小題滿分13分)已知直線與函數(shù)的圖象相切于點,且與函數(shù)的圖象也相切.

求 (Ⅰ)求直線的方程及m的值;

(Ⅱ)設,若恒成立,求實數(shù)a的取值范圍

 

查看答案和解析>>

(本小題滿分13分)已知命題:函數(shù)在區(qū)間上的最小值等于2;命題:不等式對于任意恒成立,如果上述兩命題中有且僅有一個真命題,試求實數(shù)的取值范圍。

 

查看答案和解析>>

(本小題滿分13分)

已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線12與函數(shù)的圖象以及、軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.

(Ⅰ)求、的值;

(Ⅱ)求陰影面積關于的函數(shù)的解析式;

(Ⅲ)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出的值;若不存在,說明理由.

 

 

 

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴
.                               (12分)

18、解:(1)表示取出的三個球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………6分

(2)在時, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結,由側面底面,得底面

因為,所以

,故為等腰直角三角形,,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設,

,由,,得

,

的面積

連結,得的面積

到平面的距離為,由于,得

,

解得

與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對求導得

由題意,因此,解得

(II)由(I)知),令,解得

時,,此時為減函數(shù);

時,,此時為增函數(shù).

因此的單調遞減區(qū)間為,而的單調遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設,則

因為,故當,即點為橢圓短軸端點時,有最小值

,即點為橢圓長軸端點時,有最大值

解法二:易知,所以,設,則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設條件,可設直線,

聯(lián)立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個根為,,

時,,

所以

時,,

所以

時,,,

所以時;

時,,,

所以

(II)解:

(III)證明:,

所以,

時,

,

同時,

綜上,當時,

 

 

 


同步練習冊答案