在空間給出下列命題:①若平面內(nèi)的一條直線垂直于平面內(nèi)的任意一條直線.則⊥,②若直線與平面內(nèi)的一條直線平行.則∥,③若直線與平面內(nèi)的兩條直線都垂直.則⊥,④若平面內(nèi)的兩條直線都平行于平面.則∥,其中正確的個(gè)數(shù)是 查看更多

 

題目列表(包括答案和解析)

給出下列命題:

①若平面α內(nèi)的直線l垂直于平面β內(nèi)的任意直線,則α⊥β;

②若平面α內(nèi)的任一直線都平行于平面β,則α∥β;

③若平面α垂直于平面β,直線l在平面α內(nèi),則l⊥β;

④若平面α平行于平面β,直線l在平面α內(nèi),則l∥β.

其中正確命題的個(gè)數(shù)是(  )

A.4    B.3    C.2    D.1

 

查看答案和解析>>

給出下列命題:

①若平面α內(nèi)的直線l垂直于平面β內(nèi)的任意直線,則α⊥β;

②若平面α內(nèi)的任一直線都平行于平面β,則α∥β;

③若平面α垂直于平面β,直線l在平面α內(nèi),則l⊥β;

④若平面α平行于平面β,直線l在平面α內(nèi),則l∥β.

其中正確命題的個(gè)數(shù)是(  )

A.4    B.3    C.2    D.1

 

查看答案和解析>>

給出下列命題:
①若平面α內(nèi)的直線l垂直于平面β內(nèi)的任意直線,則α⊥β;
②若平面α內(nèi)的任一直線都平行于平面β,則α∥β;
③若平面α垂直于平面β,直線l在平面α內(nèi),則l⊥β;
④若平面α平行于平面β,直線l在平面α內(nèi),則l∥β.
其中正確命題的個(gè)數(shù)是(  )

A.4B.3C.2D.1

查看答案和解析>>

給出下列命題:
①若平面α內(nèi)的直線l垂直于平面β內(nèi)的任意直線,則α⊥β;
②若平面α內(nèi)的任一直線都平行于平面β,則α∥β;
③若平面α垂直于平面β,直線l在平面α內(nèi),則l⊥β;
④若平面α平行于平面β,直線l在平面α內(nèi),則l∥β.
其中正確命題的個(gè)數(shù)是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1

查看答案和解析>>

給出下列命題:

①若平面內(nèi)的直線l垂直于平面內(nèi)的任意直線,則;

②若平面內(nèi)的任一直線都平行于平面,則;

③若平面垂直于平面,直線l在平面內(nèi),則;

④若平面平行于平面,直線l在平面內(nèi),則;

其中正確命題的個(gè)數(shù)是   

A.4                            B.3                            C.2                            D.1

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴,
.                               (12分)

18、解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………6分

(2)在時(shí), 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面

因?yàn)?sub>,所以,

,故為等腰直角三角形,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設(shè),

,由,,,得

,

的面積

連結(jié),得的面積

設(shè)到平面的距離為,由于,得

,

解得

設(shè)與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對求導(dǎo)得

由題意,因此,解得

(II)由(I)知),令,解得

當(dāng)時(shí),,此時(shí)為減函數(shù);

當(dāng)時(shí),,此時(shí)為增函數(shù).

因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設(shè),則

因?yàn)?sub>,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值

當(dāng),即點(diǎn)為橢圓長軸端點(diǎn)時(shí),有最大值

解法二:易知,所以,設(shè),則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線

聯(lián)立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個(gè)根為,,

當(dāng)時(shí),

所以;

當(dāng)時(shí),,,

所以

當(dāng)時(shí),,,

所以時(shí);

當(dāng)時(shí),,

所以

(II)解:

(III)證明:

所以

當(dāng)時(shí),

,

同時(shí),

綜上,當(dāng)時(shí),

 

 

 


同步練習(xí)冊答案