如圖10.在平面直角坐標系中.與x軸相切于D點,與y軸相交于A(0.2).B (0.8)兩點.圓心C在第一象限.(1) 求直徑BC所在直線的解析式, 查看更多

 

題目列表(包括答案和解析)

如圖10,在平面直角坐標系中,一動直線軸出發(fā),以每秒1個單位長度的速度沿軸向右平移,直線與直線相交于點,以為半徑的⊙軸正半軸交于點,與軸正半軸交于點.設(shè)直線的運動時間為秒.

(1)填空:當時,⊙的半徑為   ,   ,   ;

(2)若點是坐標平面內(nèi)一點,且以點、、為頂點的四邊形為平行四邊形.

①請你直接寫出所有符合條件的點的坐標;(用含的代數(shù)式表示)

②當點在直線上方時,過、三點的⊙軸的另一個交點為

,連接,試判斷的形狀,并說明理由.

y=x

查看答案和解析>>

如圖9,在平面直角坐標系中,二次函數(shù)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標為(3,0),OB=OC ,tan∠ACO=

(1)求這個二次函數(shù)的表達式.

(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.

(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.

(4)如圖10,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

 

 

查看答案和解析>>

如圖9,在平面直角坐標系中,二次函數(shù)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標為(3,0),OB=OC ,tan∠ACO=

(1)求這個二次函數(shù)的表達式.

(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.

(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.

(4)如圖10,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

 

 

查看答案和解析>>

如圖9,在平面直角坐標系中,二次函數(shù)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標為(3,0),OB=OC ,tan∠ACO=

(1)求這個二次函數(shù)的表達式.

(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.

(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.

(4)如圖10,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

 

 

查看答案和解析>>

如圖9,在平面直角坐標系中,二次函數(shù)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標為(3,0),OB=OC ,tan∠ACO=

(1)求這個二次函數(shù)的表達式.

(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.

(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.

(4)如圖10,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

 

 

查看答案和解析>>

一、選擇題

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空題

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答題

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 證明:在中,--2分

分別是的中點,∴.   ∴.---------4分

(2) 四邊形是矩形.

證明:∵四邊形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四邊形是平行四邊形.        ------------- 7分

∴四邊形是矩形.     ------------------------------------------------------------- 8分

18.解:過,垂足為,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)證明:在等腰梯形中,,

        --------------------------------------------------1分

,,

.                      -------------3分

(2) 解:過分別作,垂足分別為.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原來一天可獲得的利潤為 (元)-------2分

(2). ① 由題意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 當時,. ----------------------------6分

解這個方程,得.  ----------------------------------------------------------------8分

 答:出售單價是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函數(shù)解析式可知:只有點(1,4)和(3,1)在其圖像上,所以,甲獲勝的概率是,即平均每12次才獲勝1次,得10分;而乙獲勝的概率是,即平均每12次獲勝11次,得11分,所以我愿意當乙.--------------------- 10分

22.(1) 四邊形是平行四邊形.            ------------------------------1分

證明:.又,..

四邊形是平行四邊形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的證明過程,可知分別是邊長為的正三角形.

的距離為.即. -----------------8分,時, 四邊形的面積有最大值是.

此時,重合,, 四邊形是菱形. -------------------------11分

23.解:⑴過點軸,垂足為,由垂徑定理,得的中點,

.軸相切于中,

的坐標是.            -----------------2分

設(shè)的解析式為.將兩點的坐標代入,得解得所在直線的解析式為         --------------------- 4分

(2) ∵,∴連結(jié).

,∴          -----------------------6分

是直徑,∴

         -------------------------------------------------------------------8分

(3) 判斷:不存在.      ----------------------------------------------------------------- 9分

假設(shè)存在點,使為等邊三角形.則.連結(jié),那么.,利用的面積,可得,不與重合, .這與等邊三角形定義矛盾.

假設(shè)不成立.即點不存在. ----------------------------------------------------------- 12分-

 

 

 


同步練習(xí)冊答案