.此時,.此時. ------------14分 查看更多

 

題目列表(包括答案和解析)

(14分)某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200公斤,每公斤飼料的價格為1.8元,飼料的保管與其他費(fèi)用為平均每公斤每天0.03元,購買飼料每次支付運(yùn)費(fèi)300元.

(Ⅰ)求該廠多少天購買一次飼料才能使平均每天支付的總費(fèi)用最小;

(Ⅱ)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少5噸時其價格可享受八五折優(yōu)惠(即原價的85%).問該廠是否考慮利用此優(yōu)惠條件,請說明理由.

查看答案和解析>>

( 本題滿分14分) 提高過江大橋的車輛通行能力可改善整個城市的交通狀況。在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù)。當(dāng)橋上的的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明;當(dāng)2時,車流速度v是車流密度x的一次函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;

(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/每小時)可以達(dá)到最大,并求出最大值(精確到1輛/小時).

 

查看答案和解析>>

本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.

已知函數(shù)

(1)求方程的解集;

(2)如果△的三邊,滿足,且邊所對的角為,求角的取值范圍及此時函數(shù)的值域.

 

查看答案和解析>>

( 本題滿分14分) 提高過江大橋的車輛通行能力可改善整個城市的交通狀況。在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù)。當(dāng)橋上的的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明;當(dāng)2時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/每小時)可以達(dá)到最大,并求出最大值(精確到1輛/小時).

查看答案和解析>>

(本題滿分14分)

橢圓G:的兩個焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知

F1F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為

  (1)求此時橢圓G的方程;

  (2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案