③設(shè)的否命題是真命題, 查看更多

 

題目列表(包括答案和解析)

設(shè)命題p:“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;命題q:函數(shù)y=cosx的圖象關(guān)于直線x=
π
2
對稱.則下列判斷正確的是( 。

查看答案和解析>>

設(shè)命題p:關(guān)于x 的不等式x2+2ax+4>0 對一切x ∈R 恒成立,q:函數(shù)f(x)=-(4-2a)x 在(- ∞,+ ∞)上是減函數(shù).是否存在實(shí)數(shù)a ,使得兩個命題中有且僅有一個是真命題?若存在,求出實(shí)數(shù)a 的取值范圍;若不存在,請說明理由.

查看答案和解析>>

設(shè)命題p:“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;命題q:函數(shù)y=cosx的圖象關(guān)于直線x=
π
2
對稱.則下列判斷正確的是( 。
A.p為真B.¬q為假C.p∧q為假D.p∨q為真

查看答案和解析>>

設(shè)命題p:“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;命題q:函數(shù)y=cosx的圖象關(guān)于直線x=對稱.則下列判斷正確的是( )
A.p為真
B.¬q為假
C.p∧q為假
D.p∨q為真

查看答案和解析>>

下列命題中正確的序號為

①一個命題的逆否命題為真,則它的逆命題為假;
②若p:?x∈R,x2+2x+2≤0,則¬p:?x∈R,x2+2x+2>0;
③設(shè)命題p、q,若q是?p的必要不充分條件,則p是¬q的充分不必要條件.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時,

      

       當(dāng)

           12分

18.解:(1)依題意,甲答對主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因?yàn)槭录嗀、B相互獨(dú)立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過點(diǎn)E作EG交CF于G,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因?yàn)?sub>平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)過點(diǎn)B作交FE的延長線于H,

       連結(jié)AH,BH。

       由平面,

<menu id="0kmth"></menu>

           所以為二面角A―EF―C的平面角

          

           又因?yàn)?sub>

           所以CF=4,從而BE=CG=3。

           于是    10分

           在

           則,

           因?yàn)?sub>

      1. <menu id="0kmth"></menu>

               解法二:(1)如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),

               建立空間直角坐標(biāo)系

               設(shè)

               則

              

               于是

         

         

         

         

        20.解:(1)當(dāng)時,由已知得

              

               同理,可解得   4分

           (2)解法一:由題設(shè)

               當(dāng)

               代入上式,得     (*) 6分

               由(1)可得

               由(*)式可得

               由此猜想:   8分

               證明:①當(dāng)時,結(jié)論成立。

               ②假設(shè)當(dāng)時結(jié)論成立,

               即

               那么,由(*)得

              

               所以當(dāng)時結(jié)論也成立,

               根據(jù)①和②可知,

               對所有正整數(shù)n都成立。

               因   12分

               解法二:由題設(shè)

               當(dāng)

               代入上式,得   6分

              

              

               -1的等差數(shù)列,

              

                  12分

        21.解:(1)由橢圓C的離心率

               得,其中,

               橢圓C的左、右焦點(diǎn)分別為

               又點(diǎn)F2在線段PF1的中垂線上

              

               解得

                  4分

           (2)由題意,知直線MN存在斜率,設(shè)其方程為

               由

               消去

               設(shè)

               則

               且   8分

               由已知

               得

               化簡,得     10分

              

               整理得

        * 直線MN的方程為,     

               因此直線MN過定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

        22.解:   2分

           (1)由已知,得上恒成立,

               即上恒成立

               又當(dāng)

                  4分

           (2)當(dāng)時,

               在(1,2)上恒成立,

               這時在[1,2]上為增函數(shù)

                

               當(dāng)

               在(1,2)上恒成立,

               這時在[1,2]上為減函數(shù)

              

               當(dāng)時,

               令 

               又 

                   9分

               綜上,在[1,2]上的最小值為

               ①當(dāng)

               ②當(dāng)時,

               ③當(dāng)   10分

           (3)由(1),知函數(shù)上為增函數(shù),

               當(dāng)

              

               即恒成立    12分

              

              

              

               恒成立    14分

         


        同步練習(xí)冊答案