且..成等差數(shù)列. 查看更多

 

題目列表(包括答案和解析)

成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+
54
}是等比數(shù)列.

查看答案和解析>>

成等差數(shù)列的三個數(shù)的和等于18,并且這三個數(shù)分別加上1,3,17后成等比數(shù)列,求這三個數(shù)排成的等差數(shù)列.

查看答案和解析>>

已知α,β,γ成等差數(shù)列,且公差為
3
,m為實常數(shù),則sin2(α+m),sin2(β+m),sin2(γ+m)這三個三角函數(shù)式的算術(shù)平均數(shù)為
1
2
1
2

查看答案和解析>>

成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5
(1)求數(shù)列{bn}的通項公式; 
(2)數(shù)列{bn}的前n項和為Sn

查看答案和解析>>

成等差數(shù)列的三個數(shù)x、y、z,其和為-3,且x+y,y+z,z+x 成等比數(shù)列,求此三數(shù).

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5,40

ACDDB CDC

 

二、填空題(本大題共6小題,每小題5分.有兩空的小題,第一空3分,第二空2分,共30分)

(9)62        (10)2        (11)         (12)2,

(13)    (14),③④

三、解答題(本大題共6小題,共80分)

(15)(本小題共13分)

解:(Ⅰ)∵),

).                ………………………………………1分

,成等差數(shù)列,

.                                  ………………………………………3分

.                                     ………………………………………5分

.                                             ………………………………………6分

(Ⅱ)由(Ⅰ)得

).

∴數(shù)列為首項是,公差為1的等差數(shù)列.         ………………………………………8分

.

.                                         ………………………………………10分

時,.      ………………………………………12分

時,上式也成立.                             ………………………………………13分

).

 

(16)(本小題共13分)

解:(Ⅰ)該間教室兩次檢測中,空氣質(zhì)量均為A級的概率為.………………………………2分

該間教室兩次檢測中,空氣質(zhì)量一次為A級,另一次為B級的概率為.

                                                          …………………………………4分

設(shè)“該間教室的空氣質(zhì)量合格”為事件E.則                    …………………………………5分

.                              …………………………………6分

答:估計該間教室的空氣質(zhì)量合格的概率為.

(Ⅱ)由題意可知,的取值為0,1,2,3,4.                …………………………………7分

.

隨機變量的分布列為:

0

1

2

3

4

                                                        …………………………………12分

解法一:

.    …………………………………13分

解法二:,

.                                       …………………………………13分

 

(17)(本小題共14分)

(Ⅰ)證明:設(shè)的中點為.

在斜三棱柱中,點在底面上的射影恰好是的中點,

     平面ABC.         ……………………1分

平面

.               ……………………2分

,

.

,

平面.       ……………………4分

平面,

    平面平面.                          ………………………………………5分

解法一:(Ⅱ)連接,平面

是直線在平面上的射影.          ………………………………………5分

,

四邊形是菱形.

.                                   ………………………………………7分

.                                   ………………………………………9分

(Ⅲ)過點于點,連接.

,

平面.

.

是二面角的平面角.               ………………………………………11分

設(shè),則,

.

.

.

.

平面,平面

.

.

中,可求.

,∴.

.

.                   ………………………………………13分

.

∴二面角的大小為.             ………………………………………14分

解法二:(Ⅱ)因為點在底面上的射影是的中點,設(shè)的中點為,則平面ABC.以為原點,過平行于的直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標系.

設(shè),由題意可知,.

設(shè),由,得

………………………………………7分

.

  又.

.

.                                              ………………………………………9分

(Ⅲ)設(shè)平面的法向量為.

.

設(shè)平面的法向量為.則

.                                   ………………………………………12分

.                        ………………………………………13分

二面角的大小為.           ………………………………………14分

(18)(本小題共13分)

解:(Ⅰ)函數(shù)的定義域為.                 ………………………………………1分

.             ………………………………………3分

,解得.

,解得

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

………………………………………6分

(Ⅱ)由題意可知,,且上的最小值小于等于時,存在實數(shù),使得不等式成立.                             ………………………………………7分

時,

x

a+1

-

0

+

極小值

上的最小值為

,得.                           ………………………………………10分

時,上單調(diào)遞減,則上的最小值為

(舍).                            ………………………………………12分

綜上所述,.                               ………………………………………13分

(19)(本小題共13分)

解:(Ⅰ)由拋物線C:得拋物線的焦點坐標為,設(shè)直線的方程為:.                                       ………………………………………1分

.

所以,.因為, …………………………………3分

所以.

所以.即.

所以直線的方程為:.           ………………………………………5分

(Ⅱ)設(shè),,則.

.

因為,所以,. ……………………………………7分

   (?)設(shè),則.

  由題意知:,.

.

  顯然      ………………………………………9分

(?)由題意知:為等腰直角三角形,,即,即.

. .

..                      ………………………………………11分

  .

的取值范圍是.                           ………………………………………13分

 

(20)(本小題共14分)

解:(Ⅰ)取,得,即.

因為,所以.                         ………………………………………1分

,得.因為,所以.

,得,所以.

                                                    ………………………………………3分

(Ⅱ)在中取.

所以.

中取,得.

中取,

.

所以.

中取,

.

所以.

中取,

         .

所以對任意實數(shù)均成立.

所以.                        ………………………………………9分

(Ⅲ)由(Ⅱ)知,

中,

,得,即  ①

,得

,得,即

②+①得,②+③得.

.

代入①得.

代入②得.

.

由(Ⅱ)知,所以對一切實數(shù)成立.

故當時,對一切實數(shù)成立.

存在常數(shù),使得不等式對一切實數(shù)成立,且為滿足題設(shè)的唯一一組值.                   ………………………………………14分

 

說明:其它正確解法按相應(yīng)步驟給分.

 

 


同步練習(xí)冊答案