題目列表(包括答案和解析)
C
[解析] 圓的直徑是4,說明直線過圓心(-1,2),故a+b=1,+=(a+b)(+)=++≥+,當(dāng)且僅當(dāng)=,即a=2(-1),b=2-時(shí)取等號(hào),故選C.
已知點(diǎn)(),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點(diǎn),∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即, ………10分
∴
,
當(dāng)且僅當(dāng),即,時(shí)取等號(hào).
故圓面積的最小值.
一段長為32米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長18米,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少?
【解析】解:令矩形與墻垂直的兩邊為寬并設(shè)矩形寬為,則長為
所以矩形的面積 () (4分=128 (8分)
當(dāng)且僅當(dāng)時(shí),即時(shí)等號(hào)成立,此時(shí)有最大值128
所以當(dāng)矩形的長為=16,寬為8時(shí),
菜園面積最大,最大面積為128 (13分)答:當(dāng)矩形的長為16米,寬為8米時(shí)。菜園面積最大,最大面積為128平方米(注:也可用二次函數(shù)模型解答)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com