解:設(shè)矩形欄目的高為.寬為.則. 查看更多

 

題目列表(包括答案和解析)

(必做題)先閱讀:如圖,設(shè)梯形ABCD的上、下底邊的長(zhǎng)分別是a,b(a<b),高為h,求梯形的面積.
方法一:延長(zhǎng)DA、CB交于點(diǎn)O,過(guò)點(diǎn)O作CD的垂線分別交AB、CD于E、F,則EF=h.
設(shè)OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行線MN分別交AD、BC于MN,過(guò)點(diǎn)A作BC的平行線AQ分別于MN、DC于PQ,則△AMP∽△ADQ.
設(shè)梯形AMNB的高為x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的問(wèn)題:
已知四棱臺(tái)ABCD-A′B′C′D′的上、下底面的面積分別是S1,S2(S1<S2),棱臺(tái)的高為h,類(lèi)比以上兩種方法,分別求出棱臺(tái)的體積(棱錐的體積=
1
3
×底面積×高).

查看答案和解析>>

用長(zhǎng)為16米的籬笆借助一墻角圍成一個(gè)矩形ABCD(如圖所示),在P處有一棵樹(shù)距兩墻的距離分別為a(0<a<12)米和4米,現(xiàn)需要將此樹(shù)圈進(jìn)去,設(shè)矩形ABCD的面積為y(平方米),長(zhǎng)BC為x(米).
(1)設(shè)y=f(x),求y=f(x)的解析式并指出其定義域;
(2)試求y=f(x)的最大值與最小值之差g(a).

查看答案和解析>>

精英家教網(wǎng)為了美化校園環(huán)境,學(xué)校打算在蘭蕙廣場(chǎng)上建造一個(gè)絢麗多彩的矩形花園,中間有三個(gè)完全一樣的矩形花壇,每個(gè)花壇面積均為294平方米,花壇四周的過(guò)道均為2米,如圖所示,設(shè)矩形花壇的長(zhǎng)為x,寬為y,整個(gè)矩形花園面積為S.
(1)試用x,y表示S;
(2)為了節(jié)約用地,當(dāng)矩形花壇的長(zhǎng)為多少米時(shí),新建矩形花園占地最少,
占地多少平米?

查看答案和解析>>

精英家教網(wǎng)如圖,過(guò)點(diǎn)P(0,a3)(0<a<2)的兩直線與拋物線y=-ax2相切于A,B兩點(diǎn),且AD和BC均垂直于直線y=-8,垂足分別為D,C,得矩形ABCD.
(1)求A,B兩切點(diǎn)的坐標(biāo)(用a表示);
(2)設(shè)矩形ABCD的面積為S(a),求S(a)的最大值.

查看答案和解析>>

精英家教網(wǎng)如圖,在半徑為
3
、圓心角為60°的扇形的弧上任取一點(diǎn)P,作扇形的內(nèi)接矩形PNMQ,使點(diǎn)Q在OA上,點(diǎn)(N,M)在OB上,設(shè)矩形PNMQ的面積為y,
(1)按下列要求寫(xiě)出函數(shù)的關(guān)系式:
 ①設(shè)PN=x,將y表示成x的函數(shù)關(guān)系式;
 ②設(shè)∠POB=θ,將y表示成θ的函數(shù)關(guān)系式;
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出y的最大值.

查看答案和解析>>


同步練習(xí)冊(cè)答案