③若函數(shù)在R上滿足.則是周期為4的函數(shù), 查看更多

 

題目列表(包括答案和解析)

對(duì)于定義在R上的函數(shù)f(x)有以下五個(gè)命題:

yf(x)是奇函數(shù),則yf(x1)的圖象關(guān)于A(1,0)對(duì)稱;

若對(duì)于任意xR,有f(x1)f(x1),則f(x)關(guān)于直線x1對(duì)稱;

函數(shù)yf(x1)yf(1x)的圖象關(guān)于直線x1對(duì)稱;

如果函數(shù)yf(x)滿足f(x1)f(1x),f(x3)f(3x),那么該函數(shù)以4為周期.

其中正確命題的序號(hào)為________

 

查看答案和解析>>

對(duì)于定義在R上的函數(shù)f(x)有以下五個(gè)命題:
①若y=f(x)是奇函數(shù),則y=f(x-1)的圖象關(guān)于A(1,0)對(duì)稱;
②若對(duì)于任意x∈R,有f(x-1)=f(x+1),則f(x)關(guān)于直線x=1對(duì)稱;
③函數(shù)y=f(x+1)與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱;
④如果函數(shù)y=f(x)滿足f(x+1)=f(1-x),f(x+3)=f(3-x),那么該函數(shù)以4為周期.
其中正確命題的序號(hào)為________.

查看答案和解析>>

對(duì)于定義在R上的函數(shù)f(x)有以下五個(gè)命題:
①若y=f(x)是奇函數(shù),則y=f(x-1)的圖象關(guān)于A(1,0)對(duì)稱;
②若對(duì)于任意x∈R,有f(x-1)=f(x+1),則f(x)關(guān)于直線x=1對(duì)稱;
③函數(shù)y=f(x+1)與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱;
④如果函數(shù)y=f(x)滿足f(x+1)=f(1-x),f(x+3)=f(3-x),那么該函數(shù)以4為周期.
其中正確命題的序號(hào)為________.

查看答案和解析>>

在下列命題中:

①已知兩條不同直線,兩個(gè)不同平面

②函數(shù)圖象的一個(gè)對(duì)稱中心為點(diǎn);

③若函數(shù)在R上滿足,則是周期為4的函數(shù);

④在,則;

其中正確命題的序號(hào)為_________________________________。

查看答案和解析>>

下列6個(gè)命題中

(1)第一象限角是銳角

(2)角α終邊經(jīng)過點(diǎn)(a,a)(a≠0)時(shí),sinα+cosα=

(3)若y=sin()的最小正周期為4π,則

(4)若cso(α+β)=-1,則sin(2α+β)+sinβ=0

(5)若,則有且只有一個(gè)實(shí)數(shù)λ,使=λ

(6)若定義在R上函數(shù)f(x)滿足f(x+1)=-f(x),則y=f(x)是周期函數(shù)

請(qǐng)寫出正確命題的序號(hào)________

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1C、 2C、 3B、 4C5C、 6D、 7A、 8B、 9C、 10D、 11A、 12A

二、填空題(每小題4分,共16分)

13)5   14)2.6   15)48   16)①③④

三、解答題(本題共6小題,滿分共74分)

17、解:(1)因?yàn)?sub>。

所以1―2     ……………2分

所以

因?yàn)?sub>

所以   ……………………………6分

(2)……8分

因?yàn)?/p>

…10分

所以,原式………………………12分

18、解:(Ⅰ)當(dāng)n=1時(shí),………3分

(Ⅱ)(方法一)記輸入n時(shí),①中輸出結(jié)果為,②中輸出結(jié)果為’則

……………5分

所以

…………

……………8分

(方法二)猜想    ……………5分

證明:(1)當(dāng)n=1時(shí),結(jié)論成立

(2)假設(shè)當(dāng)n=k

則當(dāng)n=k+1時(shí),

所以當(dāng) n=k+1時(shí),結(jié)論成立

故對(duì),都有成立  ………………8分

     因?yàn)?sub>……………10分

所以

       ……………………………12分

19、解:(方法一)證明:設(shè)BD交AC于點(diǎn)O,連接MO,OF

因?yàn)樗倪呅蜛BCD是正方形

所以AC⊥BD,AO=CO

又因?yàn)榫匦蜛CEF,EM=FM,

所以MO⊥AO

因?yàn)檎叫蜛BCD和矩形ACEF所

在平面垂直

平面ABCD平面ACEF=AC

所以MO⊥平面ABCD

所以AM⊥BD

,

所以BD=

所以AO=1,

所以四邊形OAFM是正方形,所以AM⊥OF

因?yàn)?sub>              …………………6分

 

 

(Ⅱ)設(shè)AM、OF相交于Q,過A作AR⊥DF于R,連接QR,因?yàn)锳M⊥平面BDF,

所以QR⊥DF,則∠ARQ為二面角A―DF―B的平面角…………………9分

Rt△ADF中,AF=1,AD=,所以

Rt△AQR中,QR

所以二面角A―DF―B的余弦值為        ………………………12分

(方法二)以C為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系C―xyz,連接BD則A(,,0),B(0,,0)。

D(,0,0)

F(,,1),M(,,1)

所以

所以

所以所以AM⊥平面BDF…………6分

(Ⅱ)平面ADF的法向量為

平面BDF的法向量………………8分

    ……………………11分

所以二面角A―DF―B的余弦值為。    ……………………12分

20、解:設(shè)該人參加科目A考試合格和補(bǔ)考為時(shí)間,參加科目B考試合格和補(bǔ)考合格為時(shí)間相互獨(dú)立。

(Ⅰ)設(shè)該人不需要補(bǔ)考就可獲得證書為事件C,則C=

(Ⅱ)的可能取值為2,3,4.

則P(

  P

  P      …………………8分

所以,隨即變量的分布列為

  

2

3

4

P

所以      ………………12分

21、解:(Ⅰ)設(shè)所求雙曲線C的方程為-=1,

由題意得:

所以,所求曲線C的方程為          ……………3分

(Ⅱ)若弦PQ所在直線斜率K存在,則設(shè)其方程為y=k (x-2)

設(shè)點(diǎn)P

解得

此時(shí)點(diǎn)R到y(tǒng)軸的距離

而當(dāng)弦PQ所在直線的斜率不存在時(shí),點(diǎn)R到Y(jié)軸的距離為2,

所以,點(diǎn)R到Y(jié)軸距離的最小值為2。        ………………8分

(Ⅲ)因?yàn)橹本L:x=m與以PQ為直徑的圓相切

所以雙曲線離心率e=,右準(zhǔn)線方程為

所以|PQ|=|PF|+|QF|=2

所以,所以

因?yàn)?sub>       ………………12分

22、解:(1)因?yàn)?sub>

所以

取BC的中點(diǎn)D,則

因?yàn)?sub>

所以,點(diǎn)0在BC邊的中線上                ……………………………4分

(Ⅱ)因?yàn)?

所以

所以

所以

所以               ………………………………5分

因?yàn)?sub>

=

所以       ……………………8分

因?yàn)?sub>

所以            …………………………………10分

(Ⅲ)由題意知

在(0,+∞)上恒成立。

令h(x)=

所以

所以h(x)在(0,+∞)內(nèi)為增函數(shù),所以 h(x)>h(0)=1   …………………13分

所以     …………14分

 

 


同步練習(xí)冊(cè)答案