(Ⅱ)證明:對于都.使得成立. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).

(Ⅰ)求函數(shù)的極大值.

(Ⅱ)求證:存在,使

(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得都成立,則稱直線為函數(shù)的分界線.試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

 

查看答案和解析>>

已知函數(shù).
(Ⅰ)求函數(shù)的極大值.
(Ⅱ)求證:存在,使
(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得都成立,則稱直線為函數(shù)的分界線.試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù).

(Ⅰ)求函數(shù)的極大值.

(Ⅱ)求證:存在,使;

(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得都成立,則稱直線為函數(shù)的分界線.試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

已知數(shù)列{an}的前n項和為
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè),是否存在正整數(shù)n,使得對于任意的k∈N*,都有不等式bk≤bn成立?若存在,求出n的值;若不存在,請說明理由;
(Ⅲ)設(shè)Tn=|S1|-|S2|+…+|Sn|,求證:

查看答案和解析>>

設(shè)各項都是正數(shù)的數(shù)列{an}滿足:對于任意的自然數(shù)n,都有log0.5a1+
log0.5a2
2
+
log0.5a3
3
+…+
log0.5an
n
=n(n∈N*)

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足bn=(n+2)(
9
5
)nan
,試求數(shù)列{bn}的最大項;
(Ⅲ)令c1=3,cn=3an-1(n≥2),Sn=
n
i=1
ci
,是否存在自然數(shù)c,k,使得
Sk+1-c
Sk-c
>3
成立?證明你的論斷.

查看答案和解析>>

    2009.4

     

    1-10.CDABB   CDBDA

    11.       12. 4        13.        14.       15.  

    16.   17.

    18.解:(Ⅰ)由題意,有,

    .…………………………5分

    ,得

    ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

    (Ⅱ)由,得

    .           ……………………………………………… 10分

    ,∴.      ……………………………………………… 14分

    19.解:(Ⅰ)設(shè)數(shù)列的公比為,由.             …………………………………………………………… 4分

    ∴數(shù)列的通項公式為.      ………………………………… 6分

    (Ⅱ) ∵,    ,      ①

    .      ②         

    ①-②得: …………………12分

                 得,                           …………………14分

    20.解:(I)取中點,連接.

    分別是梯形的中位線

    ,又

    ∴面,又

    .……………………… 7分

    (II)由三視圖知,是等腰直角三角形,

         連接

         在面AC1上的射影就是,∴

         ,

    ∴當(dāng)的中點時,與平面所成的角

      是.           ………………………………14分

                                                   

    21.解:(Ⅰ)由題意:.

    為點M的軌跡方程.     ………………………………………… 4分

    (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

        ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

           同理RQ的方程為,求得.  ………………………… 9分

    .  ……………………………… 13分

    當(dāng)且僅當(dāng)時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

    22. 解:(Ⅰ),由題意得,

    所以                    ………………………………………………… 4分

    (Ⅱ)證明:令,,

    得:,……………………………………………… 7分

    (1)當(dāng)時,,在,即上單調(diào)遞增,此時.

              …………………………………………………………… 10分

    (2)當(dāng)時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

    .                        …………………………………………14分

    由 (1) 、(2)得 .

    ∴綜上所述,對于,使得成立. ………………15分


    同步練習(xí)冊答案