19.在等比數(shù)列中.滿足.是.的等差中項(xiàng).且. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,

(Ⅰ)求;(Ⅱ)證明:

 

查看答案和解析>>

(本題滿分14分)在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,
(Ⅰ)求;(Ⅱ)證明:

查看答案和解析>>

(本題滿分14分)在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,
(Ⅰ)求;(Ⅱ)證明:

查看答案和解析>>

(本題滿分14分)在數(shù)列中,已知.

(1)證明數(shù)列是等比數(shù)列;(2) 為數(shù)列的前項(xiàng)和,求的表達(dá)式;

(3)在(2)的條件下,若存在自然數(shù)使對(duì)恒成立,求的最小值.

查看答案和解析>>

(本題滿分14分) 在中,角所對(duì)的邊分別為,已知成等比數(shù)列,且

(Ⅰ)求角的大。

(Ⅱ)若,求函數(shù)的值域.

 

查看答案和解析>>

      2009.4

       

      1-10.CDABB   CDBDA

      11.       12. 4        13.        14.       15.  

      16.   17.

      18.解:(Ⅰ)由題意,有,

      .…………………………5分

      ,得

      ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

      (Ⅱ)由,得

      .           ……………………………………………… 10分

      ,∴.      ……………………………………………… 14分

      19.解:(Ⅰ)設(shè)數(shù)列的公比為,由,.             …………………………………………………………… 4分

      ∴數(shù)列的通項(xiàng)公式為.      ………………………………… 6分

      (Ⅱ) ∵,    ,      ①

      .      ②         

      ①-②得: …………………12分

                   得,                           …………………14分

      20.解:(I)取中點(diǎn),連接.

      分別是梯形的中位線

      ,又

      ∴面,又

      .……………………… 7分

      (II)由三視圖知,是等腰直角三角形,

           連接

           在面AC1上的射影就是,∴

           ,

      ∴當(dāng)的中點(diǎn)時(shí),與平面所成的角

        是.           ………………………………14分

                                                     

      21.解:(Ⅰ)由題意:.

      為點(diǎn)M的軌跡方程.     ………………………………………… 4分

      (Ⅱ)由題易知直線l1l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

          ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

             同理RQ的方程為,求得.  ………………………… 9分

      .  ……………………………… 13分

      當(dāng)且僅當(dāng)時(shí)取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

      22. 解:(Ⅰ),由題意得,

      所以                    ………………………………………………… 4分

      (Ⅱ)證明:令,,

      得:,……………………………………………… 7分

      (1)當(dāng)時(shí),,在,即上單調(diào)遞增,此時(shí).

                …………………………………………………………… 10分

      (2)當(dāng)時(shí),,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時(shí)只要或者即可,得,

      .                        …………………………………………14分

      由 (1) 、(2)得 .

      ∴綜上所述,對(duì)于,使得成立. ………………15分


      同步練習(xí)冊(cè)答案
    • <li id="kcfwa"></li>