所以.又面,所以為平面CDE的法向量. 查看更多

 

題目列表(包括答案和解析)

平面ABCD中,點A坐標為(0,1,1),點B坐標為(1,2,1),點C坐標為(-1,0,-1).若向量
a
=(-2,y,z),且
a
為平面ABC的法向量,則yz=( 。

查看答案和解析>>

平面ABCD中,點A坐標為(0,1,1),點B坐標為(1,2,1),點C坐標為(-1,0,-1).若向量=(-2,y,z),且為平面ABC的法向量,則yz=( )
A.2
B.0
C.1
D.-1

查看答案和解析>>

平面ABCD中,點A坐標為(0,1,1),點B坐標為(1,2,1),點C坐標為(-1,0,-1).若向量
a
=(-2,y,z),且
a
為平面ABC的法向量,則yz=( 。
A.2B.0C.1D.-1

查看答案和解析>>

如圖,已知△ADB和△ADC都是以D為直角頂點的直角三角形,且AD=BD=CD,∠BAC=60°,E為AC的中點,那么以下向量為平面ACD的法向量是(    )

A.              B.              C.              D.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>


同步練習冊答案