所以=, . 查看更多

 

題目列表(包括答案和解析)

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實(shí)數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實(shí)數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(1)已知曲線C的極坐標(biāo)方程為ρ2=
36
4cos2θ+9sin2θ
;
(Ⅰ)若以極點(diǎn)為原點(diǎn),極軸所在的直線為x軸,求曲線C的直角坐標(biāo)方程;
(Ⅱ)若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x+4y的最大值
(2)已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(I)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(II)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(1)設(shè)函數(shù)f(x)=
-1(x<0)
0(x=0)
1(x>0)
,則當(dāng)a≠b時(shí),
a+b+(a-b)f(a-b)
2
的值應(yīng)為
D
D

A.|a|B.|b|C.a(chǎn),b中的較小數(shù)     D.a(chǎn),b中的較大數(shù)
(2)某大學(xué)的信息中心A與大學(xué)各部門、各院系B、C、D、E、F、G、H、I之間擬建立信息聯(lián)網(wǎng)工程,實(shí)際測(cè)算的費(fèi)用如圖所示(單位萬元),請(qǐng)觀察圖形,可以不建部分網(wǎng)線,而使得中心與各部門、各院系都能連通(直接或中轉(zhuǎn)),則最少的建網(wǎng)費(fèi)用是
13
13
萬元.

查看答案和解析>>

(1)已知矩陣A=
a2
1b
有一個(gè)屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對(duì)應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(1)用坐標(biāo)法證明余弦定理:已知在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,求證:a2=b2+c2-2bccosA;
(2)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知2b=a+c,求角B的最大值;
(3)如果三個(gè)正實(shí)數(shù)a,b,c滿足a2=b2+c2-2bccosA,A∈(0,π),那么是否存在以a,b,c為三邊的三角形?請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案