(Ⅱ)若過(guò)且斜率為1的直線與雙曲線的兩漸近線分別交于.兩點(diǎn). 的面積為.求雙曲線的方程. 查看更多

 

題目列表(包括答案和解析)

已知斜率為1的直線l與雙曲線相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過(guò)直線g:x﹣y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長(zhǎng)軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.

查看答案和解析>>

已知斜率為1的直線l與雙曲線相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過(guò)直線g:x-y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長(zhǎng)軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.

查看答案和解析>>

已知斜率為1的直線l與雙曲線相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過(guò)直線g:x-y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長(zhǎng)軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.

查看答案和解析>>

過(guò)雙曲線2x2-y2=1上一點(diǎn)A(1,1)作兩條動(dòng)弦AB,AC,且直線AB,AC的斜率的乘積為3.
(1)問(wèn)直線BC是否可與坐標(biāo)軸垂直?若可與坐標(biāo)軸垂直,求直線BC的方程,若不與坐標(biāo)軸垂直,試說(shuō)明理由.
(2)證明直線BC過(guò)定點(diǎn).

查看答案和解析>>

過(guò)雙曲線2x2-y2=1上一點(diǎn)A(1,1)作兩條動(dòng)弦AB,AC,且直線AB,AC的斜率的乘積為3.
(1)問(wèn)直線BC是否可與坐標(biāo)軸垂直?若可與坐標(biāo)軸垂直,求直線BC的方程,若不與坐標(biāo)軸垂直,試說(shuō)明理由.
(2)證明直線BC過(guò)定點(diǎn).

查看答案和解析>>

 

一.選擇題:本大題共12小題,每小題5分,共60分。

(1)A       (2)B        (3)B      (4)A    (5)D       (6)D 

(7)C       (8)C        (9)A     (10)C    (11)A      (12)B

 

二.填空題:本大題共4小題,每小題5分,共20分。

(13)        (14)2          (15)       (16)44

三.解答題:本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

(17)(本小題滿分10分)

(Ⅰ)解法一:由正弦定理得.

故     

又     

故      ,

即     

故      .

因?yàn)?nbsp;   ,

故      ,

      又      為三角形的內(nèi)角,

所以    .                    ………………………5分

解法二:由余弦定理得  .

      將上式代入    整理得

      故      ,  

又      為三角形內(nèi)角,

所以    .                    ………………………5分

(Ⅱ)解:因?yàn)?sub>

故      ,

由已知 

 

又因?yàn)?nbsp; .

得      ,

所以    ,

解得    .    ………………………………………………10分

 

(18)(本小題滿分12分)

 

(Ⅰ)證明:

             ∵,,

             ∴

             又∵底面是正方形,

       ∴

             又∵,

       ∴,

       又∵,

       ∴平面平面.    ………………………………………6分

(Ⅱ)解法一:如圖建立空間直角坐標(biāo)系

設(shè),則,在中,.

、、、

的中點(diǎn),

        設(shè)是平面的一個(gè)法向量.

則由 可求得.

由(Ⅰ)知是平面的一個(gè)法向量,

,

,即.

∴二面角的大小為. ………………………………………12分

  解法二:

         設(shè),則,

中,.

設(shè),連接,過(guò),

連結(jié),由(Ⅰ)知.

在面上的射影為

為二面角的平面角.

中,,

,

.

.

即二面角的大小為. …………………………………12分

 

(19)(本小題滿分12分)

解:(Ⅰ)設(shè)取到的4個(gè)球全是白球的概率,

.          …………………………………6分

(Ⅱ)設(shè)取到的4個(gè)球中紅球個(gè)數(shù)不少于白球個(gè)數(shù)的概率

. ………………12分

 

(20)(本小題滿分12分)

解:(I)設(shè)等比數(shù)列的首項(xiàng)為,公比為,

依題意,有,

代入, 得

.               …………………………………2分

解之得  …………………6分

              …………………………………8分

(II)又單調(diào)遞減,∴.   …………………………………9分

. …………………………………10分

,即,

故使成立的正整數(shù)n的最小值為8.………………………12分

 

(21)(本小題滿分12分)

(Ⅰ)解:設(shè)雙曲線方程為,

,及勾股定理得,

由雙曲線定義得

.               ………………………………………5分

(Ⅱ),,雙曲線的兩漸近線方程為

由題意,設(shè)的方程為軸的交點(diǎn)為

交于點(diǎn),交于點(diǎn),

;由,

,

,

故雙曲線方程為.         ………………………………12分

 

(22)(本小題滿分12分)

解:(Ⅰ),

又因?yàn)楹瘮?shù)上為增函數(shù),

  上恒成立,等價(jià)于

  上恒成立.

,

故當(dāng)且僅當(dāng)時(shí)取等號(hào),而

  的最小值為.         ………………………………………6分

(Ⅱ)由已知得:函數(shù)為奇函數(shù),

  , ,  ………………………………7分

.

切點(diǎn)為,其中,

則切線的方程為:   ……………………8分

.

,

,

,

,由題意知,

從而.

,

,

.                    ………………………………………12分

 


同步練習(xí)冊(cè)答案