題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
一、
1.B 2.A 3.D 4.A 5.C 6.A 7.D 8.B 9.D 10.A
11.A 12.B
1.由題意知,解得.
2.由得,化得,解得.
3.,又.
4.設(shè)到的角為的斜率的斜率,
則,于是.
5.由條件,解即得,則.
6.不等式組化得
平面區(qū)域如圖所示,陰影部分面積:
.
7.由已知得,而
,則是以3為公比的等比數(shù)列.
8.即,于是,而解得.
9.函數(shù)可化為,令,
可得其對(duì)稱(chēng)中心為,當(dāng)時(shí)得對(duì)稱(chēng)中心為.
10..
11.由條件得:,則得所以.
12.沿球面距離運(yùn)動(dòng)路程最短,最短路程可以選
.
二、填空題
13.
,由與垂直得.即
,解得
14.99
在等差數(shù)列中,也是等差數(shù)列,由等差中項(xiàng)定理得.
所以.
15.
由題意知,直線是拋物線的準(zhǔn)線,而到的距離等于到焦點(diǎn)的距離.即求點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離和的最小值,就是點(diǎn)與點(diǎn)的距離,為.
16.②
一方面.由條件,,得,故②正確.
另一方面,如圖,在正方體中,把、分別記作、,平面、平面、平面分別記作、、,就可以否定①與③.
三、解答題
17.解:,且
,即
又.
由余弦定理,
,故.
18.解:(1)只有甲解出的概率:.
(2)只有1人解出的概率:.
19.解:(1)由已知,∴數(shù)列的公比,首項(xiàng)
又?jǐn)?shù)列中,
∴數(shù)列的公差,首項(xiàng)
∴數(shù)列、的通項(xiàng)公式依次為.
(2),
.
20.(1)證明;在直三棱柱中,
面
又
面,而面,
∴平面平面
(2)解:取中點(diǎn),連接交于點(diǎn),則.
與平面所成角大小等于與平面所成角的大小.
取中點(diǎn),連接、,則等腰三角形中,.
又由(1)得面.
面
為直線與面所成的角
又
,
∴直線與平面所成角的正切值為.
(注:本題也可以能過(guò)建立空間直角坐標(biāo)系解答)
21.解:(1)設(shè)橢圓方程為,雙曲線方程為
,半焦距
由已知得,解得,則
故橢圓及雙曲線方程分別為及.
(2)向量與的夾解即是,設(shè),則
由余弦定理得 ①
由橢圓定義得 ②
由雙曲線定義得 ③
式②+式③得,式②式③得
將它們代入式①得,解得,所以向量與夾角的余弦值為.
22.解(1)由得在處有極值
①
又在處的切線的傾斜角為
②
由式①、式②解得
設(shè)的方程為
∵原點(diǎn)到直線的距離為,
解得.
又不過(guò)第四象限,.
所以切線的方程為.
切點(diǎn)坐標(biāo)為(2,3),則,
解得
.
(2)
在上遞增,在上遞減
而
在區(qū)間上的最大值是3,最小值是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com