8.已知函數(shù).則下列命題正確的是A.f(x)是周期為1的奇函數(shù) B.f(x)是周期為2的偶函數(shù)C.f(x)是周期為1的非奇非偶數(shù) D.f(x)是周期為2的非奇非偶函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),則下列命題正確的是( )
A.對任意,方程f(x)=a只有一個實根
B.對任意,方程f(x)=a總有兩個實根
C.對任意,總存在正數(shù)x,使得f(x)>a成立
D.對任意和正數(shù)x,總有f(x)>a成立

查看答案和解析>>

已知函數(shù),則下列命題正確的是( )
A.對任意,方程f(x)=a只有一個實根
B.對任意,方程f(x)=a總有兩個實根
C.對任意,總存在正數(shù)x,使得f(x)>a成立
D.對任意和正數(shù)x,總有f(x)>a成立

查看答案和解析>>

已知函數(shù),則下列命題中:
(1)函數(shù)f(x)在[-1,+∞)上為周期函數(shù);
(2)函數(shù)f(x)在區(qū)間[m,m+1)(m∈N)上單調遞增;
(3)函數(shù)f(x)在x=m-1(m∈N)取到最大值0,且無最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有兩個實根,則
正確的命題的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

下列命題正確的是
(1)(3)(4)
(1)(3)(4)

(1)△ABC中,sinA=sinB是△ABC為等腰三角形的充分不必要條件.
(2)y=2
1-x
+
2x+1
的最大值為
5

(3)函數(shù)f(x+1)是偶函數(shù),則f(x)的圖象關于直線x=1對稱.
(4)已知f(x)在R上減,其圖象過A(0,1),B(3,-1),則|f(x+1)|<1的解集是(-1,2).
(5)將函數(shù)y=cos2x的圖象向左平移
π
4
個單位,得到y=cos(2x-
π
4
)
的圖象.

查看答案和解析>>

下列說法正確的是( )
A.命題:“已知函數(shù)f(x),若f(x+1)與f(x-1)均為奇函數(shù),則f(x)為奇函數(shù),”為直命題
B.“x>1”是“|x|>1”的必要不充分條件
C.若“p且q”為假命題,則p,q均為假命題
D.命題p:”?x∈R,使得x2+x+1<0”,則¬p:”?x∈R,均有x2+x+1≥0”

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

B

C

A

B

B

A

C

二、填空題(每小題4分,共24分)

11.6ec8aac122bd4f6e;     12.6ec8aac122bd4f6e;    13.6ec8aac122bd4f6e;    14.6ec8aac122bd4f6e;     15.6ec8aac122bd4f6e;     16.(4);

6ec8aac122bd4f6e

 

19.解:∵6ec8aac122bd4f6e,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e………………2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e,………………8分

∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=6ec8aac122bd4f6e………………12分

 

20.(1)f(x) 6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e…………4分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e得,對稱軸方程為:6ec8aac122bd4f6e………………6分

(2)由6ec8aac122bd4f6e得,f(x)的單調遞減區(qū)間為:6ec8aac122bd4f6e,k∈Z

    ………………9分

(3)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,則6ec8aac122bd4f6e

所以函數(shù)f(x)在區(qū)間6ec8aac122bd4f6e上的值域為6ec8aac122bd4f6e………………13分

 

21.解:(1)依題意,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,…………2分

∵最大值為2,最小值為-2,∴A=2∴6ec8aac122bd4f6e,………………4分

∵圖象經過(0,1),∴2sinj=1,即6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,………………6分

6ec8aac122bd4f6e………………7分

(2)∵6ec8aac122bd4f6e,∴-2≤ f(x) ≤ 2

6ec8aac122bd4f6e6ec8aac122bd4f6e解得,6ec8aac122bd4f6e6ec8aac122bd4f6e………………12分

 

22.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e=2cos2x+cosx-1………………5分

(2)要使圖象至少有一公共點,須使f(x)=g(x)在上至少有一解,

令t=cos x,∵x∈(0,p) ∴x與t一一對應,且t∈(-1,1),

即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分

整理得:t2-at+(2-a)=0

1°一解:f(1)?f(-1)=(3-2a)?3<0,解得:6ec8aac122bd4f6e………………9分

2°兩解(含重根的情形):

6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,∴6ec8aac122bd4f6e……11分

綜上所述:6ec8aac122bd4f6e………………12分

 

 

本資料由《七彩教育網》www.7caiedu.cn 提供!


同步練習冊答案