設.為正實數(shù).則下列不等式恒成立的是 查看更多

 

題目列表(包括答案和解析)

某無色溶液中可能含有I、NH、Cu2、SO,向該溶液中加入少量溴水,溶液呈無色,則下列關于溶液組成的判斷正確的是(  )

①肯定不含I ②肯定不含Cu2、劭隙ê蠸O

④可能含有I

A.①③   B.①②③   C.③④   D.②③④

 

查看答案和解析>>

詞匯運用.
1.They hoped to ________(實現(xiàn)他們的目標) by the end of the year.
2.She will join us ________(有一個條件).
3.Operator,please ________(給我接通) Mr. Wang.
4.We all respect him for ________(他的奉獻) to his career.
5.Although she is already in her thirties,she ________(行為像個小孩子).
6.It is ________(值得) to read the book again.
7.He is ________(很受尊敬) in our town.
8.They are always ________(為錢爭吵).
9.________(讓孩子們高興的是),he fell in the water.
10.His words ________(鼓舞著我們) to make greater efforts.
11.Jane spent many years ________(觀察) and recording their daily activities.
12.We ________(下決心) to learn English well.
13. A big earthquake ________(襲擊) the city last year.
14.We are told the matter is still ________(正在考慮中).

查看答案和解析>>

關于力的分類,下列敘述中正確的是(   )

A.根據(jù)效果命名的同一名稱的力,性質一定相同 B.根據(jù)效果命名的不同名稱的力,性質可能相同

C.性質不同的力,對于物體的作用效果一定不同 D.性質相同的力,對于物體的作用效果一定相同

查看答案和解析>>

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側棱長相等,這個三棱錐的底面邊長與各側棱長也都相等.設四棱錐、三棱錐、三棱柱的高分別為,,則( 。

A.           B.                  C.              D.

查看答案和解析>>

一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側棱長相等,這個三棱錐的底面邊長與各側棱長也都相等.設四棱錐、三棱錐、三棱柱的高分別為,,則( 。

A.           B.                  C.              D.

查看答案和解析>>

1.解析:,故選A。

2.解析:∵

故選B。

3.解析:由,得,此時,所以,,故選C。

4.解析:顯然,若共線,則共線;若共線,則,即,得,∴共線,∴共線是共線的充要條件,故選C。

5.解析:設公差為,由題意得,;,解得,故選C。

6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

7.解析:∵為正實數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數(shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,此函數(shù)的最小值為,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當時,圓面被分成2塊,涂色方法有20種;②當時,圓面被分成3塊,涂色方法有60種;

③當時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:做出表示的平面區(qū)域如圖,當直線經過點時,取得最大值5。

學科網(Zxxk.Com)14.解析:∵,∴時,,又時,滿足上式,因此,

。

學科網(Zxxk.Com)15.解析:設正四面體的棱長為,連,取的中點,連,∵的中點,∴,∴或其補角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為。

學科網(Zxxk.Com)16.解析:∵,∴,∵點的準線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關于軸對稱的兩點且做出圖形如右圖,其中為點到準線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

,,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

。………………………10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學生甲被評為三好學生的概率為!12分

(理)∵,,!9分

的分布列如下表:

0

1

2

3

的數(shù)學期望!12分

19.(12分)解析:(Ⅰ)時,

,

    

得,   ………3分

 

 

+

0

0

+

遞增

極大值

遞減

極小值

遞增

,      ………………………6分

(Ⅱ)在定義域上是增函數(shù),

恒成立,即 

   ………………………9分

(當且僅當時,

               

 ………………………4分

學科網(Zxxk.Com)              

20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

,,∴,又∵平面,,∴,∴二面角的正切值的大小為。………………………8分

(Ⅲ)過點,交于點,∵平面,∴在平面內的射影,∴與平面所成的角,………………………10分

學科網(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

解法2:如圖建立空間直角坐標系,(Ⅰ)∵,,∴點的坐標分別是,,∴,設,∵平面,∴,∴,取,∴,∴!4分

(Ⅱ)設二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為。………………………12分

21.(Ⅰ) 解析:如圖,設右準線軸的交點為,過點


同步練習冊答案