(Ⅰ)求的值,(Ⅱ)若有一科不合格.則不能拿到高中畢業(yè)證.求學(xué)生甲不能拿到高中畢業(yè)證的概率,(Ⅲ)若至少有兩科得A.一科得B.就能被評為三好學(xué)生.則學(xué)生甲被評為三好學(xué)生的概率, 查看更多

 

題目列表(包括答案和解析)

.高中會考成績分A,B,C,D四個等級,其中等級D為會考不合格,某學(xué)校高三學(xué)生甲參加語文、數(shù)學(xué)、英語三科會考,三科會考合格的概率均為,每科得A,B,C,D 四個等級的概率分別為,

(Ⅰ)求的值;

(Ⅱ)若有一科不合格,則不能拿到高中畢業(yè)證,求學(xué)生甲不能拿到高中畢業(yè)證的概率;

(Ⅲ)若至少有兩科得A,一科得B,就能被評為三好學(xué)生,求學(xué)生甲被評為三好學(xué)生的概率;

(Ⅳ)設(shè)為學(xué)生甲會考不合格科目數(shù),求的分布列及的數(shù)學(xué)期望

查看答案和解析>>

2007年廣東省實行高中等級考試,高中等級考試成績分A,B,C,D四個等級,其中等級D為不合格,09年我校高二學(xué)生盛興參加物理、化學(xué)、歷史三科,三科合格的概率均為
4
5
,每科得A,B,C,D 四個等級的概率分別為x,
2
5
,
3
10
,y
,
(Ⅰ)求x,y的值;
(Ⅱ)若有一科不合格,則不能拿到高中畢業(yè)證,求學(xué)生盛興不能拿到高中畢業(yè)證的概率;
(Ⅲ)若至少有兩科得A,一科得B,就能被評為三星級學(xué)生,則學(xué)生甲被評為三星級學(xué)生的概率;
(Ⅳ)設(shè)ξ為學(xué)生盛興考試不合格科目數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

2007年廣東省實行高中等級考試,高中等級考試成績分A,B,C,D四個等級,其中等級D為不合格,09年我校高二學(xué)生盛興參加物理、化學(xué)、歷史三科,三科合格的概率均為數(shù)學(xué)公式,每科得A,B,C,D 四個等級的概率分別為數(shù)學(xué)公式,
(Ⅰ)求x,y的值;
(Ⅱ)若有一科不合格,則不能拿到高中畢業(yè)證,求學(xué)生盛興不能拿到高中畢業(yè)證的概率;
(Ⅲ)若至少有兩科得A,一科得B,就能被評為三星級學(xué)生,則學(xué)生甲被評為三星級學(xué)生的概率;
(Ⅳ)設(shè)ξ為學(xué)生盛興考試不合格科目數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

2007年廣東省實行高中等級考試,高中等級考試成績分A,B,C,D四個等級,其中等級D為不合格,09年我校高二學(xué)生盛興參加物理、化學(xué)、歷史三科,三科合格的概率均為
4
5
,每科得A,B,C,D 四個等級的概率分別為x,
2
5
,
3
10
,y
,
(Ⅰ)求x,y的值;
(Ⅱ)若有一科不合格,則不能拿到高中畢業(yè)證,求學(xué)生盛興不能拿到高中畢業(yè)證的概率;
(Ⅲ)若至少有兩科得A,一科得B,就能被評為三星級學(xué)生,則學(xué)生甲被評為三星級學(xué)生的概率;
(Ⅳ)設(shè)ξ為學(xué)生盛興考試不合格科目數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

2007年廣東省實行高中等級考試,高中等級考試成績分A,B,C,D四個等級,其中等級D為不合格,09年我校高二學(xué)生盛興參加物理、化學(xué)、歷史三科,三科合格的概率均為,每科得A,B,C,D 四個等級的概率分別為,
(Ⅰ)求x,y的值;
(Ⅱ)若有一科不合格,則不能拿到高中畢業(yè)證,求學(xué)生盛興不能拿到高中畢業(yè)證的概率;
(Ⅲ)若至少有兩科得A,一科得B,就能被評為三星級學(xué)生,則學(xué)生甲被評為三星級學(xué)生的概率;
(Ⅳ)設(shè)ξ為學(xué)生盛興考試不合格科目數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

1.解析:,故選A。

2.解析:∵

故選B。

3.解析:由,得,此時,所以,,故選C。

4.解析:顯然,若共線,則共線;若共線,則,即,得,∴共線,∴共線是共線的充要條件,故選C。

5.解析:設(shè)公差為,由題意得,;,解得,故選C。

6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

7.解析:∵、為正實數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數(shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,此函數(shù)的最小值為,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當(dāng)時,圓面被分成2塊,涂色方法有20種;②當(dāng)時,圓面被分成3塊,涂色方法有60種;

③當(dāng)時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點時,取得最大值5。

學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時,,又時,滿足上式,因此,,

學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長為,連,取的中點,連,∵的中點,∴,∴或其補(bǔ)角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為

學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點的準(zhǔn)線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關(guān)于軸對稱的兩點且做出圖形如右圖,其中為點到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

,,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

。………………………10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為!12分

(理)∵,,!9分

的分布列如下表:

0

1

2

3

的數(shù)學(xué)期望!12分

19.(12分)解析:(Ⅰ)時,

,

    

得,   ………3分

 

 

+

0

0

+

遞增

極大值

遞減

極小值

遞增

,      ………………………6分

(Ⅱ)在定義域上是增函數(shù),

恒成立,即 

   ………………………9分

(當(dāng)且僅當(dāng)時,

               

 ………………………4分

學(xué)科網(wǎng)(Zxxk.Com)              

20.解析:(Ⅰ)∵,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分

(Ⅲ)過點,交于點,∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴。………………………4分

(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線軸的交點為,過點分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵,∴,………………………2分

,又∵,∴,又∵,解得,∴,∴雙曲線的方程為!4分

(Ⅱ)聯(lián)立方程組   消得:

由直線與雙曲線交于不同的兩點得:

  于是 ,且    ………………①………………………6分

設(shè),則

……………………9分

,所以,解得      ……………②   

由①和②得    即

的取值范圍為!12分

22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分

又∵,,∴公差為2,

,………………………4分

(Ⅱ)∵,∴,

∴數(shù)列是公比為2的等比數(shù)列,

,∴,………………………6分

(Ⅲ)∵

………………………8分

………………………10分

,∴,又∵,∴………………………12分

 

 


同步練習(xí)冊答案