題目列表(包括答案和解析)
有一個(gè)數(shù)據(jù)運(yùn)算裝置,如下圖所示,輸入數(shù)據(jù)x通過這個(gè)運(yùn)算裝置就輸出一個(gè)數(shù)據(jù)y,輸入一組數(shù)據(jù),則會(huì)輸出另一組數(shù)據(jù).要使輸入的數(shù)據(jù)介于20~100之間(含20和100,且一個(gè)都不能少),輸出的另一組數(shù)據(jù)后滿足下列要求:①新數(shù)據(jù)在60~100之間(含60和100,也一個(gè)都不能少);②新數(shù)據(jù)的大小關(guān)系與原數(shù)據(jù)的大小關(guān)系相反,即原數(shù)據(jù)較大的對(duì)應(yīng)新數(shù)據(jù)較。
(1)若該裝置的運(yùn)算規(guī)則是一次函數(shù),求出這種關(guān)系;
(2)若該裝置的運(yùn)算規(guī)則是y=a(x-h(huán))2(a>0),求滿足上述條件的a,h應(yīng)滿足的關(guān)系式;
(3)請(qǐng)你設(shè)計(jì)一種滿足上述條件新的運(yùn)算規(guī)則(非一次、二次函數(shù)).
1.解析:,故選A。
2.解析:∵
,
故選B。
3.解析:由,得,此時(shí),所以,,故選C。
4.解析:顯然,若與共線,則與共線;若與共線,則,即,得,∴與共線,∴與共線是與共線的充要條件,故選C。
5.解析:設(shè)公差為,由題意得,;,解得或,故選C。
6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.
7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.
8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。
9.解析:∵
,此函數(shù)的最小值為,故選C。
10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。
11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A
12.解析:如圖,①當(dāng)或時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)或時(shí),圓面被分成3塊,涂色方法有60種;
③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。
13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最大值5。
14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,,
∴。
15.解析:設(shè)正四面體的棱長為,連,取的中點(diǎn),連,∵為的中點(diǎn),∴∥,∴或其補(bǔ)角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。
16.解析:∵,∴,∵點(diǎn)為的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。
17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分
∴,,………4分
(Ⅱ)∵,,∴,∴,………………………6分
又∵,∴,∴,………………………8分
∴。………………………10分
18.解析:(Ⅰ)∵,∴;……………………理3文4分
(Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為。……………………12分
(理)∵,,,!9分
∴的分布列如下表:
0
1
2
3
∴的數(shù)學(xué)期望!12分
19.(12分)解析:(Ⅰ)時(shí),
,,
由得, 或 ………3分
+
0
-
0
+
遞增
極大值
遞減
極小值
遞增
, ………………………6分
(Ⅱ)在定義域上是增函數(shù),
對(duì)恒成立,即
………………………9分
又(當(dāng)且僅當(dāng)時(shí),)
………………………4分
20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分
(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分
,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分
(Ⅲ)過點(diǎn)做∥,交于點(diǎn),∵平面,∴為在平面內(nèi)的射影,∴為與平面所成的角,………………………10分
∵,∴,又∵∥,∴和與平面所成的角相等,∴與平面所成角的正切值為!12分
解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分
(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分
(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為。………………………12分
21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵ ∥,∴,………………………2分
∴,又∵,∴,又∵,解得,∴,∴雙曲線的方程為!4分
(Ⅱ)聯(lián)立方程組 消得:
由直線與雙曲線交于不同的兩點(diǎn)得:
即 于是 ,且 ………………①………………………6分
設(shè)、,則
……………………9分
又,所以,解得 ……………②
由①和②得 即 或
故的取值范圍為!12分
22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分
又∵,,∴公差為2,
∴,………………………4分
(Ⅱ)∵,∴,
∴數(shù)列是公比為2的等比數(shù)列,
∵,∴,………………………6分
(Ⅲ)∵,
∴………………………8分
∴………………………10分
∵,∴,又∵,∴………………………12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com