題目列表(包括答案和解析)
7 |
3 |
6 |
2 |
7 |
3 |
6 |
2 |
7 |
2 |
6 |
3 |
7 |
2 |
6 |
3 |
7 |
2 |
6 |
3 |
7 |
2 |
6 |
3 |
14 |
18 |
14 |
18 |
7 |
2 |
6 |
3 |
已知數列滿足,
(1)求證:數列是等比數列;
(2)求數列的通項和前n項和.
【解析】第一問中,利用,得到從而得證
第二問中,利用∴ ∴分組求和法得到結論。
解:(1)由題得 ………4分
……………………5分
∴數列是以2為公比,2為首項的等比數列; ……………………6分
(2)∴ ……………………8分
∴ ……………………9分
∴
要證,只需證,即需,即需證,即證35>11,因為35>11顯然成立,所以原不等式成立。以上證明運用了
A.比較法 B.綜合法 C.分析法 D.反證法
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.
(Ⅰ)求證:點為棱的中點;
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知,面。由此知:從而有又點是的中點,所以,所以點為棱的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點作于點,取的中點,連。面面且相交于,面內的直線,面!3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點是的中點,所以,所以點為棱的中點. …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
已知函數其中為自然對數的底數, .(Ⅰ)設,求函數的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.
【解析】第一問中,當時,,.結合表格和導數的知識判定單調性和極值,進而得到最值。
第二問中,∵,,
∴原不等式等價于:,
即, 亦即
分離參數的思想求解參數的范圍
解:(Ⅰ)當時,,.
當在上變化時,,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時,,.
(Ⅱ)∵,,
∴原不等式等價于:,
即, 亦即.
∴對于任意的,原不等式恒成立,等價于對恒成立,
∵對于任意的時, (當且僅當時取等號).
∴只需,即,解之得或.
因此,的取值范圍是
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com