已知拋物線與橢圓都經(jīng)過點(diǎn).它們在軸上有共同焦點(diǎn).橢圓的對稱軸是坐標(biāo)軸.拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).(Ⅰ)求拋物線與橢圓的方程, 查看更多

 

題目列表(包括答案和解析)

已知一條拋物線和一個(gè)橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上具有相同的焦點(diǎn)F1,且兩者的對稱軸都是坐標(biāo)軸,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn).
(1)求拋物線的方程和橢圓方程;
(2)假設(shè)橢圓的另一個(gè)焦點(diǎn)是F2,經(jīng)過F2的直線l與拋物線交于P,Q兩點(diǎn),且滿足
F2P
=m
F2Q
,求m的取值范圍.

查看答案和解析>>

已知一條拋物線和一個(gè)橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上具有相同的焦點(diǎn)F1,且兩者的對稱軸都是坐標(biāo)軸,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn).
(1)求拋物線的方程和橢圓方程;
(2)假設(shè)橢圓的另一個(gè)焦點(diǎn)是F2,經(jīng)過F2的直線l與拋物線交于P,Q兩點(diǎn),且滿足數(shù)學(xué)公式,求m的取值范圍.

查看答案和解析>>

已知一條拋物線和一個(gè)橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上具有相同的焦點(diǎn)F1,且兩者的對稱軸都是坐標(biāo)軸,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn).
(1)求拋物線的方程和橢圓方程;
(2)假設(shè)橢圓的另一個(gè)焦點(diǎn)是F2,經(jīng)過F2的直線l與拋物線交于P,Q兩點(diǎn),且滿足
F2P
=m
F2Q
,求m的取值范圍.

查看答案和解析>>

已知一條拋物線和一個(gè)橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上具有相同的焦點(diǎn)F1,且兩者的對稱軸都是坐標(biāo)軸,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn).
(1)求拋物線的方程和橢圓方程;
(2)假設(shè)橢圓的另一個(gè)焦點(diǎn)是F2,經(jīng)過F2的直線l與拋物線交于P,Q兩點(diǎn),且滿足,求m的取值范圍.

查看答案和解析>>

已知一條拋物線和一個(gè)橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上具有相同的焦點(diǎn)F1,且兩者的對稱軸都是坐標(biāo)軸,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn).
(1)求拋物線的方程和橢圓方程;
(2)假設(shè)橢圓的另一個(gè)焦點(diǎn)是F2,經(jīng)過F2的直線l與拋物線交于P,Q兩點(diǎn),且滿足,求m的取值范圍.

查看答案和解析>>

1.解析:,故選A。

2.解析:抽取回族學(xué)生人數(shù)是,故選B。

3.解析:由,得,此時(shí),所以,,故選C。

4.解析:∵,∴,∴,故選C。

5.解析:設(shè)公差為,由題意得,;,解得,故選C。

6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.

7.解析:∵為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,∴此函數(shù)的最小正周期是,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當(dāng)時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)時(shí),圓面被分成3塊,涂色方法有60種;

③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:將代入結(jié)果為,∴時(shí),表示直線右側(cè)區(qū)域,反之,若表示直線右側(cè)區(qū)域,則,∴是充分不必要條件。

學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,。

學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長為,連,取的中點(diǎn),連,∵的中點(diǎn),∴,∴或其補(bǔ)角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為。

學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點(diǎn)的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對稱性可知,點(diǎn)為拋物線上關(guān)于軸對稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

,,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

!10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為。……………………12分

19.(12分)解析:(Ⅰ)∵,∴,

 ,,……………3分

(Ⅱ)∵,∴

,

,∴數(shù)列自第2項(xiàng)起是公比為的等比數(shù)列,………………………6分

,………………………8分

(Ⅲ)∵,∴,………………10分

!12分

20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分

(Ⅲ)過點(diǎn),交于點(diǎn),∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為。………………………12分

解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴。………………………4分

(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,∴,∴,∴與平面所成角的正切值為。………………………12分

21.解析:(Ⅰ)設(shè)拋物線方程為,將代入方程得

所以拋物線方程為!2分

由題意知橢圓的焦點(diǎn)為。

設(shè)橢圓的方程為,

∵過點(diǎn),∴,解得,,,

∴橢圓的方程為。………………………5分

(Ⅱ)設(shè)的中點(diǎn)為,的方程為:,

為直徑的圓交兩點(diǎn),中點(diǎn)為

設(shè),則

  

………………………8分

………………………10分

當(dāng)時(shí),,,

此時(shí),直線的方程為。………………………12分

22.(12分)解析:(Ⅰ)∵是偶函數(shù),∴,

又∵,,………………………2分

得,,

時(shí),;時(shí),時(shí),;∴時(shí),函數(shù)取得極大值,時(shí),函數(shù)取得極小值!5分

(Ⅱ)∵在區(qū)間上為增函數(shù),∴上恒成立,∴

在區(qū)間上恒成立,………………………7分

……………………9分

又∵=,∵

,∴的取值范圍是!12分

 


同步練習(xí)冊答案