查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

 

一、選擇題:本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個是符合題目要求的。

1―8 BDCAABCB

二、填空題:本大題共有6個小題,每小題5分,共30分;請把答案寫在相應(yīng)的位置上。

9.    10.    11.7    12.    13.    14.

三、解答題:本大題共6個小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:

   (1)

   (2)由(1)知,

16.(本題滿分13分)

    解:(1)表示經(jīng)過操作以后袋中只有1個紅球,有兩種情形出現(xiàn)

①先從中取出紅和白,再從中取一白到

②先從中取出紅球,再從中取一紅球到

。 ………………7分

   (2)同(1)中計算方法可知:。

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本題滿分13分)

解法1:(1)連結(jié)MA、B1M,過M作MN⊥B1M,且MN交CC1點N,

又∵平面ABC⊥平面BB1C1C,

平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C,

∵MN平面BB1C1C

∴MN⊥AM。

∵AM∩B1M=M,

∴MN⊥平面AMB1,∴MN⊥AB1

∵在Rt△B1BM與Rt△MCN中,

即N為C1C四等分點(靠近點C)。  ……………………6分

   (2)過點M作ME⊥AB1,垂足為R,連結(jié)EN,

由(1)知MN⊥平面AMB1,

∴EN⊥AB1,

∴∠MEN為二面角M―AB1―N的平面角。

∵正三棱柱ABC―A1B1C1,BB1=BC=2,

  • <td id="fbmcj"></td>
    • ∴N點是C1C的四等分點(靠近點C)。  ………………6分

         (2)∵AM⊥BC,平面ABC⊥平面BB1C1C,

      且平面ABC∩平面BB1C1C=BC,

      ∴AM⊥平面BB1C1C,

      ∵MN平面BB1C1,∴AM⊥MN,

      ∵MN⊥AB1,∴MN⊥平面AMB1,

       

      18.(本題滿分13分)

      解:(1)

         (2)當

         (3)令

           ①

           ②

      ①―②得   ………………13分

      19.(本題滿分14分)

      解:(1)設(shè)橢圓C的方程:

         (2)由

              ①

      由①式得

      20.(本題滿分14分)

      解:(1)

         (2)證明:①在(1)的過程中可知

      ②假設(shè)在

      綜合①②可知:   ………………9分

         (3)由變形為:

         

       

       


      同步練習(xí)冊答案