② 直線平面平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系xOy中,已知⊙M經(jīng)過點F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點,其中c>0.
(1)求⊙M的標準方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點分別為D、B,⊙M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

查看答案和解析>>

平面直角坐標系中,O為坐標原點,給定兩點A(1,0),B(0,-2),點C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求點C的軌跡方程;
(Ⅱ)設點C的軌跡與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
交于兩點M,N,且以MN為直徑的圓過原點,求證:
1
a2
-
1
b2
為定值.

查看答案和解析>>

平面直角坐標系x0y中,動點P到直線x=-2的距離比它到點F(1,0)的距離大1.
(1)求動點P的軌跡C;
(2)求曲線C與直線x=4所圍成的區(qū)域的面積.

查看答案和解析>>

平面內(nèi)有向量
OA
=(1,7),
OB
=(5,1),
OP
=(2,1),點X為直線OP上的一個動點.
(1)當
XA
XB
取最小值時,求
OX
的坐標;
(2)當點X滿足(1)的條件和結(jié)論時,求cos∠AXB的值.

查看答案和解析>>

平面直角坐標系xOy中,已知以O為圓心的圓與直線l:y=mx+(3-4m)恒有公共點,且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點,圓內(nèi)動點P使|
PA
|
|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍.

查看答案和解析>>

1.A      2.C       3.B       4.A      5.C       6.C       7.D      8.C       9.D      10.B 學科網(wǎng)(Zxxk.Com)

1l.B      12.A學科網(wǎng)(Zxxk.Com)

1.解析:,故選A.學科網(wǎng)(Zxxk.Com)

2.解析:學科網(wǎng)(Zxxk.Com)

       ,∴選C.學科網(wǎng)(Zxxk.Com)

3.解析:是增函數(shù)  學科網(wǎng)(Zxxk.Com)

       故,即學科網(wǎng)(Zxxk.Com)

       又學科網(wǎng)(Zxxk.Com)

       ,故選B.學科網(wǎng)(Zxxk.Com)

學科網(wǎng)(Zxxk.Com)4.解析:如圖作出可行域,作直線,平移直線位置,使其經(jīng)過點.此時目標函數(shù)取得最大值(注意反號)學科網(wǎng)(Zxxk.Com)

學科網(wǎng)(Zxxk.Com)

學科網(wǎng)(Zxxk.Com)

       ,故選A學科網(wǎng)(Zxxk.Com)

5.解析:設有人投中為事件,則,學科網(wǎng)(Zxxk.Com)

       故選C.學科網(wǎng)(Zxxk.Com)

6.解析:展開式中能項;學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

       由,得,故選C.

7.解析:

       由

,故選D.

8.略

9.解析:由得準線方程,雙曲線準線方程為

       ,解得

       ,故選D.

10.解析:設正四面體的棱長為2,取中點為,連接,則所成的角,在

,故選B.

11.解析:由題意,則,故選B.

12.解析:由已知,

       為球的直徑

       ,又

       設,則

       ,

      

       又由,解得

       ,故選A.

另法:將四面體置于正方休中.

       正方體的對角線長為球的直徑,由此得,然后可得

二、

13.解析:上的投影是

14.解析:,且

15.解析:,

      

       由余弦定理為鈍角

       ,即,

       解得

16.

解析:容易知命題①是錯的,命題②、③都是對的,對于命題④我們考查如圖所示的正方體,設棱長為,顯然為平面內(nèi)兩條距離為的平行直線,它們在底面內(nèi)的射影、仍為兩條距離為的平行直線,但兩平面卻是相交的.

三、

17.解:(1)

              ,

,故

       (2)

              由

邊上的高為,則

18.(1)設甲、乙兩人同時參加災區(qū)服務為事件,則

(2)記甲、乙兩人同時參加同一災區(qū)服務為事件,那么

(3)隨機變量可能取得值為1,2,事件“”是指有兩人同時參加災區(qū)服務,則,所以

分布列是

1

2

19.解:(1)平面

              ∵二面角為直二面角,且

             

平面              平面

(2)(法一)連接與高交于,連接是邊長為2的正方形,                  ,

二平面,由三垂線定理逆定理得

是二面角的平面角

由(1)平面,

中,

∴在中,

故二面角等于

(2)(法二)利用向量法,如圖以之中點為坐標原點建立空間坐標系,則

             

             

              ,

              設平面的法向量分別為,則由

              ,而平面的一個法向理

             

              故所求二面角等于

20.解:(1)由題設,即

              易知是首項為、公差為2的等差數(shù)列,

              ∴通項公式為,

       (2)由題設,,得是以公比為的等比數(shù)列.

             

              由

21.解:(1)由題意,由拋物線定義可求得曲線的方程為

(2)證明:設的坐標分別為

             若直線有斜率時,其坐標滿足下列方程組:

              ,        

              若沒有斜率時,方程為

              又

             

              ;又,

                         

22.(1)解:,于是,

              解得

              因,故

(2)證明:已知函數(shù)都是奇函數(shù).

所以函數(shù)也是奇函數(shù),其圖象是以原點為中心的中心對稱圖形,而

可知.函數(shù)的圖象按向量平移,即得到函數(shù)的圖象,故函數(shù)的圖象是以點(1,1)為中心的中心對稱圖形,

(3)證明;在曲線上作取一點,

       由知,過此點的切線方程為

,得,切線與直線交點為

,得切線與直線交點為,直線與直線與直線的交點為(1,1).

從而所圍三角形的面積為        

所以,圍成三角形的面積為定值2.

www.ks5u.com

 

 


同步練習冊答案