已知函數. 查看更多

 

題目列表(包括答案和解析)

已知函數.f(x)=
(
1
2
)
n
f(x+1)     (x<4)
(x≥4)
,則f(2+log23)的值等于( 。
A、
3
8
B、
1
24
C、
1
12
D、
1
8

查看答案和解析>>

已知函數.f(x)=
x1+ex
+ln(1+ex)-x.
(I)求證:0<f(x)≤ln2;
(II)是否存在常數a使得當x>0時,f(x)>a恒成立?若存在,求a的取值范圍,若不存在,說明理由.

查看答案和解析>>

已知函數數學公式
(1)若a=-4,求函數f(x)的單調區(qū)間;
(2)若函數f(x)在[1,+∞)上單調遞增,求實數a的取值范圍;
(3)記函數g(x)=x2[f′(x)+2x-2],若g(x)的最小值是-6,求函數f(x)的解析式.

查看答案和解析>>

已知函數數學公式.(a,b∈R)
( I)若f'(0)=f'(2)=1,求函數f(x)的解析式;
( II)若b=a+2,且f(x)在區(qū)間(0,1)上單調遞增,求實數a的取值范圍.

查看答案和解析>>

已知函數數學公式
(1)求f(x)的定義域和值域;
(2)證明函數數學公式在(0,+∞)上是減函數.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:,

       是減函數,由,得,故選A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的單調遞增區(qū)間為

       (2)

             

             

             

18.解:(1)當時,有種坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列為          

0

2

3

4

              則

19.解:(1)時,,

             

              又              ,

             

              是一個以2為首項,8為公比的等比數列

             

       (2)

             

              最小正整數

20.解法一:

       (1)設于點

              平面

于點,連接,則由三垂線定理知:是二面角的平面角.

由已知得,

,

∴二面角的大小的60°.

       (2)當中點時,有平面

              證明:取的中點,連接,則,

              ,故平面即平面

              平面,

              平面

解法二:由已知條件,以為原點,以、、軸、軸、軸建立空間直角坐標系,則

             

       (1),

              ,設平面的一個法向量為

設平面的一個法向量為,則

二面角的大小為60°.

(2)令,則,

      

       由已知,,要使平面,只需,即

則有,得中點時,有平面

21.解:(1)由條件得,所以橢圓方程是

             

(2)易知直線斜率存在,令

       由

      

,

代入

       有

22.解:(1)

       上為減函數,時,恒成立,

       即恒成立,設,則

       時,在(0,)上遞減速,

      

      

(2)若即有極大值又有極小值,則首先必需有兩個不同正要,,

       即有兩個不同正根

       令

    ∴當時,有兩個不同正根

    不妨設,由知,

    時,時,時,

    ∴當時,既有極大值又有極小值.www.ks5u.com

 

 


同步練習冊答案