又∵BDAC.∴BD平面PAC. ---- 12分 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,PA=AB=2,BC=a,又側棱PA⊥底面ABCD.
(1)當a為何值時,BD⊥平面PAC?試證明你的結論.
(2)當a=4時,求D點到平面PBC的距離.
(3)當a=4時,求直線PD與平面PBC所成的角.

查看答案和解析>>

精英家教網(wǎng)已知四棱錐P-ABCD,PA⊥底面ABCD,AD∥BC,AB⊥AD,AC與BD交于點O,又PA=3,AD=2,AB=2
3
,BC=6

(Ⅰ) 求證:BD⊥平面PAC;
(Ⅱ)求二面角O-PB-A的余弦值.

查看答案和解析>>

17、在四棱錐P-ABCD中,底面ABCD是矩形,AB=2,BC=a,又側棱PA⊥底面ABCD.
(1)當a為何值時,BD⊥平面PAC?試證明你的結論.
(2)當a=4時,求證:BC邊上存在一點M,使得PM⊥DM.
(3)若在BC邊上至少存在一點M,使PM⊥DM,求a的取值范圍.

查看答案和解析>>

如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,PA=AB=2,BC=a,又側棱PA⊥底面ABCD.
(1)當a為何值時,BD⊥平面PAC?試證明你的結論.
(2)當a=4時,求D點到平面PBC的距離.
(3)當a=4時,求直線PD與平面PBC所成的角.

查看答案和解析>>

在四棱錐P-ABCD中,底面ABCD是矩形,AB=2,BC=a,又側棱PA⊥底面ABCD.
(1)當a為何值時,BD⊥平面PAC?試證明你的結論.
(2)當a=4時,求證:BC邊上存在一點M,使得PM⊥DM.
(3)若在BC邊上至少存在一點M,使PM⊥DM,求a的取值范圍.

查看答案和解析>>


同步練習冊答案