題目列表(包括答案和解析)
.(本題滿分13分)2008年中國北京奧運(yùn)會吉祥物由5個(gè)“中國福娃”組成,分別叫貝貝、晶晶、歡歡、迎迎、妮妮.現(xiàn)有8個(gè)相同的盒子,每個(gè)盒子中放一只福娃,每種福娃的數(shù)量如下表:
福娃名稱 | 貝貝 | 晶晶 | 歡歡 | 迎迎 | 妮妮 |
數(shù)量 | 1 | 1 | 1 | 2 | 3 |
從中隨機(jī)地選取5只.(I)求選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率;
(II)若完整地選取奧運(yùn)會吉祥物記10分;若選出的5只中僅差一種記8分;差兩種記6分;以此類推. 設(shè)ξ表示所得的分?jǐn)?shù),求ξ的分布列及數(shù)學(xué)期望.
福娃名稱 | 貝貝 | 晶晶 | 歡歡 | 迎迎 | 妮妮 |
數(shù)量 | 1 | 1 | 1 | 2 | 3 |
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
答案
A
D
A
A
A
A
B
B
A
D
二、填空題
11. 8 + ; 12. 60; 13.; 14. 14; 15. .
三、解答題
16. 解:(1)依題意的,所以,于是 ……………2分
由解得 ……………4分
把代入,可得,所以,
所以,因?yàn)?sub>,所以 綜上所述, …………7分
(2)令,得,又
故 函數(shù)的零點(diǎn)是 ……………10分
由得
函數(shù)的單調(diào)遞增區(qū)間是 ……………13分
17. 解:(1)當(dāng)為中點(diǎn)時(shí),有平面 ………2分
證明:連結(jié)交于,連結(jié)∵四邊形是矩形 ∴為中點(diǎn)
又為中點(diǎn),從而 ……………………………4分
∵平面,平面∴平面……………6分
(2)建立空間直角坐標(biāo)系如圖所示,則,,,, ……7分
所以,. ……………………………8分
設(shè)為平面的法向量,則有,即令,可得平面的一個(gè)法向量為,
而平面的一個(gè)法向量為 ……………11分
所以所以二面角的余弦值為……………13分
18. 解:
19.解:
(1)依題意雙曲線方程可化為則=4
點(diǎn)P的軌跡是以為焦點(diǎn)的橢圓,其方程可設(shè)為
由得
則所求橢圓方程為,
故動點(diǎn)P的軌跡E的方程為;………………3分
(2)設(shè),則由,可知
在中
又即
當(dāng)且僅當(dāng)時(shí)等號成立.故的最小值為………………6分
(3)當(dāng)與軸重合時(shí),構(gòu)不成角AMB,不合題意.
當(dāng)軸時(shí),直線的方程為,代入解得、的坐標(biāo)分別為、 而,∴,猜測為定值.………8分
證明:設(shè)直線的方程為,由 ,得
∴ , ………10分
∴
∴ 為定值。(AB與點(diǎn)M不重合) ……13分
20.解:
(1)當(dāng)時(shí),由得;當(dāng)時(shí)由得
綜上:當(dāng)時(shí)函數(shù)的定義域?yàn)?sub>; 當(dāng)時(shí)函數(shù)的定義域?yàn)?sub>………3分
(2)………5分
令時(shí),得即,
①當(dāng)時(shí),時(shí),當(dāng)時(shí),,
故當(dāng) 時(shí),函數(shù)的遞增區(qū)間為,遞減區(qū)間為
②當(dāng)時(shí),,所以,
故當(dāng)時(shí),在上單調(diào)遞增.
③當(dāng)時(shí),若,;若,,
故當(dāng)時(shí),的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為.
綜上:當(dāng)時(shí),的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為
當(dāng)時(shí),的單調(diào)遞增區(qū)間為;
當(dāng)時(shí),的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為; …10分
(Ⅲ)因?yàn)楫?dāng)時(shí),函數(shù)的遞增區(qū)間為;單調(diào)遞減區(qū)間為
若存在使得成立,只須,
即 ………14分
21.(本題滿分14分,共3小題,任選其中2題作答,每小題7分)
(1)選修4-2:矩陣與變換
解:由 M= N= 可得
的特征多項(xiàng)式為
令得矩陣的特征值為
再分別求得對應(yīng)于特征值的特征向量…………7分
(2) 選修4-5:不等式選講
(1)解:依題意可知 ,
則函數(shù)的圖像如圖所示:
(2)由函數(shù)的圖像容易求得原不等式的解集為…………7分
(3) 選修4-4:坐標(biāo)系與參數(shù)方程
解:由 即則易得由易得
圓心到直線的距離為
又圓的半徑為2 , 圓上的點(diǎn)到直線的距離的最小值為…………7分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com