(Ⅱ)是否存在一個最小正整數(shù)M.當(dāng)時.恒成立?若存在.求出這個M的值,若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時,{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)數(shù)學(xué)公式時,{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有數(shù)學(xué)公式成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時,{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)時,{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)時,{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

 

二、選擇題

 

題號

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

C

B

C

A

 

三、填空題

(11){x│x<1 } (12) (13)  3   (14)m=0或m≥1    (15) 2004

(16)②③④

三解答題

(17)(Ⅰ);  (Ⅱ).

 

(18)解:由題目知的圖像是開口向下,交軸于兩點的拋物線,對稱軸方程為(如圖)

那么,當(dāng)時,有,代入原式得:

解得:

經(jīng)檢驗知: 不符合題意,舍去.

(Ⅰ)由圖像知,函數(shù)在內(nèi)為單調(diào)遞減,所以:當(dāng)時,,當(dāng)時,.

內(nèi)的值域為

(Ⅱ)令

要使的解集為R,則需要方程的根的判別式,即

解得  當(dāng)時,的解集為R.

(19)(Ⅰ);  (Ⅱ)存在M=4.

 

(20)解:任設(shè)x 1>x2

         f(x 1)-f(x2) = a x 1+ - a x 2 -

                  =(x 1-x 2)(a+ )

         ∵f(x)是R上的減函數(shù),

         ∴(x 1-x 2)(a+ )<0恒成立

<1

       ∴a≤ -1 

(21)解:(Ⅰ)由已知

  ,

(Ⅱ)設(shè),

當(dāng)且僅當(dāng)時, 

 

(Ⅲ)

 橢圓的方程為

(22)(Ⅰ).

(Ⅱ)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

 

 

 

 


同步練習(xí)冊答案