17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)等體積的球和正方體,試比較它們表面積的大小關(guān)系.

查看答案和解析>>

(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設(shè)計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

(本小題滿分10分)

已知函數(shù)

   (Ⅰ)求函數(shù)的最小正周期;

   (Ⅱ)當(dāng)時,求函數(shù)的最大值和最小值.

查看答案和解析>>

(本小題滿分10分)已知A,B,C,分別是的三個角,向量

與向量垂直。w.w.w.k.s.5.u.c.o.m        

   (1)求的大小;

   (2)求函數(shù)的最大值。

查看答案和解析>>

(本小題滿分10分)

      已知的內(nèi)角、所對的邊分別為、、,向量

,且,為銳角.

     (Ⅰ)求角的大;

     (Ⅱ)若,求的面積w.w.w.k.s.5.u.c

查看答案和解析>>

一. 每小題5分,共60分      DACDB  DACBB   DD

二. 每小題5分,共20分.其中第16題前空2分,后空3分.

13.  60;     14.  ;     15. ;    16.   2,-

三.解答題:本大題共6個小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

17.(Ⅰ) 

    

(Ⅱ)                (7分)

       (8分)

                      (10分)

18.解:(Ⅰ)記“該人被錄用”的事件為事件A,其對立事件為,則

(Ⅱ)該生參加測試次數(shù)ξ的可能取值為2,3,4,依題意得

(10分)

(8分)

(6分)

 

 

分布列為 

2

3

4

p

1/9

4/9

4/9

……………………………….11分

 

 

 

……………..12分       

19. 解:(Ⅰ)依題意 ,,故…1分,     

當(dāng)時, ① 又

②?①整理得:,故為等比數(shù)列…………………3分

…………4分∴…………………………….5分

,即是等差數(shù)列………………….6分

(Ⅱ)由(Ⅰ)知,

…8分.

      …………9分,依題意有,解得…11分

故所求最大正整數(shù)的值為……………………………………………12分

20.

 

 

 

 

 

 

 

 

 

 

解法一圖

解法二圖

 

 

解法一:(1)證明:

………………………….5分

(8分)

 解法二:以C為坐標(biāo)原點,射線CA為x軸的正半軸,建立如圖所示的空間直角坐        標(biāo)系C-xyz.依題意有C ,

                      (3分)

(Ⅰ)

(5分)

(12分)

設(shè)

變化情況如下表:

 

(0,1)

1

(1,+∞)

0

+

遞減

0

遞增

處有一個最小值0,即當(dāng)時,>0,∴=0只有一個解.即當(dāng)時,方程有唯一解………………………6分.

(12分)

(1分) 依題意又由過兩點A,B的切線相互垂直得

從而

即所求曲線E的方程為 y=……………………………………4分

  (Ⅱ)由(Ⅰ)得曲線F方程為,令=0,得曲線F與軸交點是(0,b);令,由題意b≠-1 且Δ>0,解得b<3 且b≠-1.           ………………………………………….6分

(?)方法一:設(shè)所求圓的一般方程為=0 得這與=0 是同一個方程,故D=4,.………………….8分.

=0 得,此方程有一個根為b+1,代入得出E=?b?1.

所以圓C 的方程…………………9分

方法二:①+②得

(?)方法一:圓C 必過定點(0,1)和(-4,1).………………………11分

證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,

所以圓C 必過定點(0,1).同理可證圓C 必過定點(-4,1).…………………12分

  方法二:由 圓C 的方程得………………11分

12分

 

 


同步練習(xí)冊答案