研究問題:“已知關(guān)于x的不等式的解集為(1.2).解關(guān)于x的不等式 .有如下解法: 解:由.令.則.1). 所以不等式的解集為(.1). 參考上述解法.已知關(guān)于x的不等式的解集為.則關(guān)于x的不等式的解集為 . 查看更多

 

題目列表(包括答案和解析)

研究問題:“已知關(guān)于x的不等式的解集為(1,2),解關(guān)于x的不等式”,有如下解法:
解:由,令,則,1),
所以不等式的解集為(,1).
參考上述解法,已知關(guān)于x的不等式的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式的解集為    

查看答案和解析>>

 研究問題:“已知關(guān)于x的不等式的解集為(1,2),解關(guān)于x的不等式”,有如下解法:

    解:由

    所以不等式的解集為()、

    參考上述解法,已知關(guān)于x的不等式,則關(guān)于x的不等式的解集為        。

 

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?數(shù)學(xué)公式,令數(shù)學(xué)公式,則數(shù)學(xué)公式,
所以不等式cx2-bx+a>0的解集為數(shù)學(xué)公式
參考上述解法,已知關(guān)于x的不等式數(shù)學(xué)公式的解集為(-2,-1)∪(2,3),求關(guān)于x的不等式數(shù)學(xué)公式的解集.

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:
由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,則y∈(
1
2
, 1)
,
所以不等式cx2-bx+a>0的解集為(
1
2
, 1)

參考上述解法,已知關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-2,-1)∪(2,3),求關(guān)于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集.

查看答案和解析>>

一.選擇題:DCBBA  DACCA

二.填空題:11.4x-3y-17 = 0  12.33  13.
      14.  15.

三.解答題:

16.(1)解:∵,                                  2分
∴由得:,即              4分
又∵,∴                                                                                    6分

(2)解:                                    8分
得:,即          10分
兩邊平方得:,∴                                          12分

17.方法一

(1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角          6分
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小為45°              8分

(3)解:過點B作BH⊥AC,垂足為H,連結(jié)DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH為BD與平面ACD所成的角           10分
設(shè)AB = a,在Rt△BHD中,

,∴                                                                                        12分

方法二
(1)同方法一                                                                                                               4分
(2)解:設(shè)以過B點且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標系,設(shè)AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
平面ABC的法向量 = (1,0,0)
設(shè)平面ABD的一個法向量為n = (x,y,z),則

n = (1,-1,0)                           6分

∴二面角C-AB-D的大小為45°                                                                           8分

(3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
設(shè)平面ACD的一個法向量是m = (x,y,z),則
∴可取m = (0,a,1),設(shè)直線BD與平面ACD所成角為,則向量、m的夾角為
                                                                        10分

,∴                                                                                        12分

18.解:該商場應(yīng)在箱中至少放入x個其它顏色的球,獲得獎金數(shù)為,
= 0,100,150,200
,,
,                        8分
的分布列為

      <form id="rhwst"></form>
    1. 0

      100

      150

      200

      P

       

      19.(1)解:設(shè)M (x,y),在△MAB中,| AB | = 2,

                              2分
      因此點M的軌跡是以A、B為焦點的橢圓,a = 2,c = 1
      ∴曲線C的方程為.                                                                                4分

      (2)解法一:設(shè)直線PQ方程為 (∈R)
      得:                                                            6分
      顯然,方程①的,設(shè)P(x1,y1),Q(x2,y2),則有

                                                                 8分
      ,則t≥3,                                                             10分
      由于函數(shù)在[3,+∞)上是增函數(shù),∴
      ,即S≤3
      ∴△APQ的最大值為3                                                                                              12分

      解法二:設(shè)P(x1,y1),Q(x2,y2),則
      當直線PQ的斜率不存在時,易知S = 3
      設(shè)直線PQ方程為
        得:  ①                                         6分
      顯然,方程①的△>0,則
                                          8分
                                      10分
          
      ,則,即S<3

      ∴△APQ的最大值為3                                                                                              12分

      20.(1)解:∵,
                                                                               2分
      時,
      ∵當時,,此時函數(shù)遞減;
      時,,此時函數(shù)遞增;
      ∴當時,F(xiàn)(x)取極小值,其極小值為0.                                                          4分

      (2)解:由(1)可知函數(shù)的圖象在處有公共點,
      因此若存在的隔離直線,則該直線過這個公共點.
      設(shè)隔離直線的斜率為k,則直線方程為,即              6分
      ,可得時恒成立
      得:                                                                              8分
      下面證明時恒成立.

      ,                                                                           10分
      時,
      ∵當時,,此時函數(shù)遞增;
      時,,此時函數(shù)遞減;
      ∴當時,取極大值,其極大值為0.                                                        12分
      從而,即恒成立.
      ∴函數(shù)存在唯一的隔離直線.                                              13分

      21.(1)解:記
      令x = 1得:
      令x =-1得:
      兩式相減得:
                                                                                                              2分
      當n≥2時,
      當n = 1時,,適合上式
                                                                                                       4分

      (2)解:
      注意到                               6分
      ,


      ,即                                             8分

      (3)解:
          (n≥2)                                                                        10分

               12分

                                                             14分

       

       

       


      同步練習(xí)冊答案