題目列表(包括答案和解析)
已知一動(dòng)圓M,恒過點(diǎn)F,且總與直線相切.
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)探究在曲線C上,是否存在異于原點(diǎn)的兩點(diǎn),當(dāng)時(shí),
直線AB恒過定點(diǎn)?若存在,求出定點(diǎn)坐標(biāo);若不存在,說明理由.
已知一動(dòng)圓M,恒過點(diǎn)F,且總與直線相切.
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)探究在曲線C上,是否存在異于原點(diǎn)的兩點(diǎn),當(dāng)時(shí),
直線AB恒過定點(diǎn)?若存在,求出定點(diǎn)坐標(biāo);若不存在,說明理由.
已知一動(dòng)圓M,恒過點(diǎn)F,且總與直線相切.
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)探究在曲線C上,是否存在異于原點(diǎn)的兩點(diǎn),當(dāng)時(shí),
直線AB恒過定點(diǎn)?若存在,求出定點(diǎn)坐標(biāo);若不存在,說明理由.
(本小題滿分12分)已知一動(dòng)圓M,恒過點(diǎn)F,且總與直線相切.
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)探究在曲線C上,是否存在異于原點(diǎn)的兩點(diǎn),當(dāng)時(shí), 直線AB恒過定點(diǎn)?若存在,求出定點(diǎn)坐標(biāo);若不存在,說明理由.
一、選擇題:D C B B A C A C
二、填空題:9、60 ; 10、8 11、;12、 13、;14、1:6 ; 15、
三、解答題:
16、解:解: ( 1) 由圖知A= 4…………1分 由,得 所以…3分
② 再由圖象的橫坐標(biāo)縮短為原來得的圖象…………10分
③由的圖象縱坐標(biāo)伸長為原來的4倍得的圖象…………12分
17、解:1)3個(gè)旅游團(tuán)選擇3條不同線路的概率為:P1= ……4分
(2)設(shè)選擇甲線路旅游團(tuán)數(shù)為ξ,則ξ=0,1,2,3………………5分
P(ξ=0)= P(ξ=1)= P(ξ=2)= P(ξ=3)= …9分
ξ
0
1
2
3
∴ξ的分布列為:
………………10分
18、(本小題14分)
(1) 因?yàn)閯?dòng)圓M,過點(diǎn)F且與直線相切,所以圓心M到F的距離等于到直線的距離.所以,點(diǎn)M的軌跡是以F為焦點(diǎn), 為準(zhǔn)線的拋物線,且,, 所以所求的軌跡方程為……………5分
即:,令,得,所以,無論為何值,直線AB過定點(diǎn)(4,0)
19.解:解:方法一:⑴.證明:連結(jié)OC ………… 1分
⑵.解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知,
∴ 直線OE與EM所成的銳角就是異面直線AB與CD所成的角,…………… 8分
∴異面直線AB與CD所成角的余弦值為. ………………………… 11分
⑶.解:設(shè)點(diǎn)E到平面ACD的距離為. , …12分
方法二:⑴.同方法一.⑵.解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,則
,∴,令得是平面ACD的一個(gè)法向量.又 ∴點(diǎn)E到平面ACD的距離 .…14分
∴當(dāng)時(shí),,此時(shí)單調(diào)遞減
當(dāng)時(shí),,此時(shí)單調(diào)遞增 ……3分 ∴的極小值為 ……4分
當(dāng)時(shí),,在上單調(diào)遞增 ……7分
(Ⅲ)假設(shè)存在實(shí)數(shù),使()有最小值3, …9分
① 當(dāng)時(shí),在上單調(diào)遞減,,(舍去),所以,
此時(shí)無最小值. ……10分 ②當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增
③ 當(dāng)時(shí),在上單調(diào)遞減,,(舍去),所以,此時(shí)無最小值.綜上,存在實(shí)數(shù),使得當(dāng)時(shí)有最小值3.
是以2為公比, 為首項(xiàng)的等比數(shù)列. ……①
為公比, 為首項(xiàng)的等比數(shù)列. ……②
當(dāng)為奇數(shù)時(shí),,,又為偶數(shù)
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com