(Ⅰ)求證函數是奇函數, 查看更多

 

題目列表(包括答案和解析)

函數f(x)的定義域為D={x|x≠0},且滿足對于任意x1、x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數,求x的取值范圍.

查看答案和解析>>

函數f(x)的定義域D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)與f(-1)的值;
(2)判斷函數的奇偶性并證明;
(3)若x>1時,f(x)>0,求證f(x)在區(qū)間(0,+∞)上是增函數;
(4)在(3)的條件下,若f(4)=1,求不等式f(3x+1)≤2的解集.

查看答案和解析>>

函數f(x)是R上的奇函數,且當x>0時,函數的解析式為f(x)=
2x
-1

(1)求f(-1)的值;
(2)求當x<0時,函數的解析式;
(3)用定義證明f(x)在(0,+∞)上是減函數.

查看答案和解析>>

函數f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)如果f(4)=1,f(3x+4)≤3,且f(x)在(0,+∞)上是增函數,求x的取值范圍.

查看答案和解析>>

函數f(x)對,都有f(x+y)=f(x)+f(y)
(1)求f(0)的值;
(2)判斷并證明f(x)的奇偶性;
(3)若f(x)在定義域上是單調函數且f(1)=2,解不等式f(x)≥f(1-2x)-4.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

解答

B

D

A

B

D

B

D

C

D

C

二、填空題:本大題共7小題,每小題4分,共28分

11.        負                                   12.              

13.                                  14.                                

15.       2                                     16.      2125                  

17.                              

三、解答題:本大題共5小題,共72分.解答應寫出文字說明,證明過程或演算步驟.

18.解:(1)=,得:=,

即:,      …………………………………………………………3分

  又∵0<,

=.               …………………………………………………………5分

(2)直線方程為:

,點到直線的距離為:

,    …………………………………………………………9分

 ∴,  …………………………………………………………11分

又∵0<,       

 ∴sin>0,cos<0; …………………………………………………………12分

  

 ∴sin-cos=    ……………14分

19.(Ⅰ)證明:連A1B,D1C.

……2分  

連結,則

,故D1E⊥平面AB1F.     ………………………………………5分

(Ⅱ)由(Ⅰ)知,E為棱BC的中點.

   ………………9分

(Ⅲ).               ………………………11分

中,

 ………………………14分

20. (Ⅰ)證明:令

,總有恒成立.

,總有恒成立.

故函數是奇函數.              ………………………………………………5分

(Ⅱ)

.…………………………………………8分

……………………………………………………………………………10分

(Ⅲ)

……………………………………………………………………………15分

21.解:(Ⅰ)若為等腰直角

三角形,所以有OA=OF2,即b=c .  ………2分

所以     …………5分

   (Ⅱ)由題知

其中,

 …8分

將B點坐標代入,

解得. 、佟     10分

又由 ② …12分

由①, ②解得,

所以橢圓方程為.     ……………………………………………14分

22.解:  

(Ⅰ)由題意,得

所以,         …………………………………………5分

   (Ⅱ)由(Ⅰ)知,

 

 

-4

(-4,-2)

-2

1

 

+

0

0

+

 

 

極大值

極小值

 

函數值

-11

 

13

 

 

4

在[-4,1]上的最大值為13,最小值為-11。     …………………10分

(Ⅲ)

.所以存在,使. ……………15分

 

 


同步練習冊答案