C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

5.(文)D。ɡ恚〤 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

13.33 14.7 15.18

  16.只要寫出-4c2c,cc≠0)中一組即可,如-4,2,1等

  17.解析:

              

              

  18.解析:(1)由,,成等差數(shù)列,得,

  若q=1,則,,

  由≠0 得 ,與題意不符,所以q≠1.

  由,得

  整理,得,由q≠0,1,得

 。2)由(1)知:,

  ,所以,,成等差數(shù)列.

  19.解析:(1)記“摸出兩個球,兩球恰好顏色不同”為A,摸出兩個球共有方法種,

  其中,兩球一白一黑有種.

  ∴ 

  (2)法一:記摸出一球,放回后再摸出一個球“兩球恰好顏色不同”為B,摸出一球得白球的概率為,摸出一球得黑球的概率為

  ∴ PB)=0.4×0.6+0.6+×0.4=0.48

  法二:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”.

  ∴ 

  ∴ “有放回摸兩次,顏色不同”的概率為

  20.解析:(甲)(1)∵ △為以點M為直角頂點的等腰直角三角形,∴ 

  ∵ 正三棱柱, ∴ 底面ABC

  ∴ 在底面內(nèi)的射影為CM,AMCM

  ∵ 底面ABC為邊長為a的正三角形, ∴ 點MBC邊的中點.

 。2)過點CCH,由(1)知AMAMCM,

  ∴ AM⊥平面 ∵ CH在平面內(nèi), ∴ CHAM,

  ∴ CH⊥平面,由(1)知,

  ∴ . ∴ 

  ∴ 點C到平面的距離為底面邊長為

 。3)過點CCII,連HI, ∵ CH⊥平面,

  ∴ HICI在平面內(nèi)的射影,

  ∴ HI,∠CIH是二面角的平面角.

  在直角三角形中,,

  ∴ ∠CIH=45°, ∴ 二面角的大小為45°

  (乙)解:(1)以B為原點,建立如圖所示的空間直角坐標(biāo)系.

  ∵ AC2a,∠ABC=90°,

  ∴ 

  ∴ B(0,0,0),C(0,,0),A,0,0),

  ,0,3a),(0,,3a),(0,0,3a).

  ∴ ,,,,,

  ∴ ,,,,

  ∴ ,, ∴ ,

  ∴ . 故BE所成的角為

 。2)假設(shè)存在點F,要使CF⊥平面,只要

  不妨設(shè)AFb,則F,0,b),,,,0,,,, ∵ , ∴ 恒成立.

  ,

  故當(dāng)2a時,平面

  21.解析:(1)法一:l

  解得. ∵ 、、成等比數(shù)列,

  ∴  ∴ , ,,

  ∴ ,. ∴ 

  法二:同上得,

  ∴ PAx軸.. ∴ 

  (2) ∴ 

  即 , ∵ 

  ∴ ,即 ,. ∴ ,即 

  22.解析:(1). 又cb<1,

  故 方程fx)+1=0有實根,

  即有實根,故△=

  即

  又cb<1,得-3<c≤-1,由

 。2),

  ∴ cm<1 ∴ 

  ∴ . ∴ 的符號為正.

 


同步練習(xí)冊答案