(2)求△面積的最大值. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最大值為2.
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)△ABC中,,角A,B,C所對的邊分別是a,b,c,且C=60°,c=3,求△ABC的面積.

查看答案和解析>>

已知函數(shù)的最大值為2.
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)△ABC中,,角A,B,C所對的邊分別是a,b,c,且C=60°,c=3,求△ABC的面積.

查看答案和解析>>

在一定面積的水域中養(yǎng)殖某種魚類,每個網(wǎng)箱的產(chǎn)量P是網(wǎng)箱個數(shù)x的一次函數(shù),如果放置4個網(wǎng)箱,則每個網(wǎng)箱的產(chǎn)量為16噸;如果放置7個網(wǎng)箱,則每個網(wǎng)箱的產(chǎn)量為10噸,由于該水域面積限制,最多只能放置10個網(wǎng)箱.
(1)試問放置多少個網(wǎng)箱時,總產(chǎn)量Q最高?
(2)若魚的市場價為m萬元/噸,養(yǎng)殖的總成本為5lnx+1萬元.
(i)當m=0.25時,應放置多少個網(wǎng)箱才能使總收益y最大?
(ii)當m≥0.25時,求使得收益y最高的所有可能的x值組成的集合.

查看答案和解析>>

已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)上的單調(diào)遞減區(qū)間;
(Ⅱ)中,,角所對的邊分別是,且,求的面積.

查看答案和解析>>

已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)上的單調(diào)遞減區(qū)間;
(Ⅱ)中,,角所對的邊分別是,且,求的面積.

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 

10.B 11.(理)A (文)C 12.B 13.(理)。ㄎ模25,60,15 

14.-672 15.2.5小時 16.①,④

  17.解析:設fx)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得fx)的圖象關于直線x=1對稱,若m>0,則x≥1時,fx)是增函數(shù),若m<0,則x≥1時,fx)是減函數(shù).

  ∵ ,,,,

,

  ∴ 當時,

,

  ∵ , ∴ 

  當時,同理可得

  綜上:的解集是當時,為;

  當時,為,或

  18.解析:(理)(1)設甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場

  依題意得

 。2)設甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

 。ㄎ模┰O甲袋內(nèi)恰好有4個白球為事件B,則B包含三種情況.

 、偌状腥2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.

  ∴ 

  19.解析:(甲)(1)建立如圖坐標系:O為△ABC的重心,直線OPz軸,ADy軸,x軸平行于CB,

  得A(0,,0)、B(1,,0)、D(0,,0)、E(0,).

 。2),,,,

  設ADBE所成的角為,則

 ∴ 

 。ㄒ遥1)取中點E,連結(jié)ME,

  ∴ MCEC. ∴ MC. ∴ M,CN四點共面.

 。2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

  (3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ ,

  當x≥1時,是增函數(shù),其最小值為

  ∴ a<0(a=0時也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點,極小值點

  此時fx)在,上時減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨設k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出

  ∴ . ∴ (定值).

 。2)設直線AB方程為,與聯(lián)立,消去y

  由D>0得-4<m<4,且m≠0,點MAB的距離為

  設△AMB的面積為S. ∴ 

  當時,得

  22.解析:(1)∵ a,,

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3時不合題意,舍去). ∴a=2.

 。2),由可得

  . ∴ 

  ∴ b=5

  (3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ ,

  當n≥3時,

  

     

  

  

  ∴ . 綜上得 

 


同步練習冊答案