將全體正整數排成一個三角形數陣: 查看更多

 

題目列表(包括答案和解析)

精英家教網將全體正整數排成一個三角形數陣:按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個數為
 

查看答案和解析>>

將全體正整數排成一個三角形數陣:
精英家教網
按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個數為.

查看答案和解析>>

將全體正整數排成一個三角形數陣:
精英家教網
按照以上排列的規(guī)律,第n行(n≥3)從左向右的第1個數為
 

查看答案和解析>>

將全體正整數排成一個三角形數陣:
1
2   3
4   5   6
7   8   9  10

按照以上排列的規(guī)律,第100行從左向右的第3個數為
 

查看答案和解析>>

將全體正整數排成一個三角形數陣:
      1
    2   3
  4   5   6
7   8   9  10

按照以上排列的規(guī)律,第n 行(n≥3)從左向右的第3 個數為( 。
A、
n2+n
2
B、
n2+n+6
2
C、
n2-n
2
D、
n2-n+6
2

查看答案和解析>>

1、C  2、A  3、C  4、A  5、C  6、B  7、B  8、D  9、A  10、C  11、B  12、D

13、1.56   14、5   15、

 16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個直角面面積的平方和等于斜面面積的平方;(3)斜面與三個直角面所成二面角的余弦平方和等于1,等等

17、解: (Ⅰ)   =
  =   =   =

  (Ⅱ) ∵   ∴ ,
  又∵   ∴   當且僅當 b=c=時,bc=,故bc的最大值是.

18、

19、(1)證明:底面           

          

平面平面

(2)解:因為,且,

      可求得點到平面的距離為

(3)解:作,連,則為二面角的平面角

      設,,在中,求得

同理,,由余弦定理

解得, 即=1時,二面角的大小為

20、

21、解:設

由題意可得:

                                 

相減得:

                                 

∴直線的方程為,即

(2)設,代入圓的方程整理得:

是上述方程的兩根

             

同理可得:     

.                             

22、解:(1)由題意,在[]上遞減,則解得  

所以,所求的區(qū)間為[-1,1]        

(2)取,即不是上的減函數

不是上的增函數

所以,函數在定義域內不單調遞增或單調遞減,從而該函數不是閉函數

(3)若是閉函數,則存在區(qū)間[],在區(qū)間[]上,函數的值域為[],即,為方程的兩個實數根,

即方程有兩個不等的實根

時,有,解得

時,有,無解

綜上所述,

 

 

 


同步練習冊答案