設(shè)等差數(shù)列前項(xiàng)和滿足.且.S2=6,函數(shù).且 (1)求A, 查看更多

 

題目列表(包括答案和解析)

(09年湖南十二校理)(13分)設(shè)等差數(shù)列項(xiàng)和滿足,且,S2=6;函數(shù),且

   (1)求A; 

(2)求數(shù)列的通項(xiàng)公式;

   (3)若

查看答案和解析>>

設(shè)等差數(shù)列{an},{bn}前n項(xiàng)和Sn,Tn滿足
Sn
Tn
=
An+1
2n+7
,且
a3
b4+b6
+
a7
b2+b8
=
2
5
,S2=6;函數(shù)g(x)=
1
2
(x-1)
,且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求數(shù)列{an}及{cn}的通項(xiàng)公式;
(3)若dn=
an(n為奇數(shù))
cn(n為偶數(shù))
,試求d1+d2+…+dn

查看答案和解析>>

設(shè)等差數(shù)列{an},{bn}前n項(xiàng)和Sn,Tn滿足,且,S2=6;函數(shù),且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求數(shù)列{an}及{cn}的通項(xiàng)公式;
(3)若

查看答案和解析>>

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項(xiàng)和Tn.

【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項(xiàng)求和得到Tn.

解: (Ⅰ) 設(shè):{an}的公差為d,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分

 

查看答案和解析>>

(2013•東莞一模)設(shè)等差數(shù)列{an},{bn}前n項(xiàng)和Sn,Tn滿足
Sn
Tn
=
An+1
2n+7
,且
a3
b4+b6
+
a7
b2+b8
=
2
5
,S2=6;函數(shù)g(x)=
1
2
(x-1)
,且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求數(shù)列{an}及{cn}的通項(xiàng)公式;
(3)若dn=
an(n為奇數(shù))
cn(n為偶數(shù))
,試求d1+d2+…+dn

查看答案和解析>>

一、選擇題(每小題5分,共40分)

題號(hào)

1

2

3

4

5

6

7

8

答案

A

A

C

D

C

A

B

D

二、填空題(每小題5分,共30分)

9.84; 10.;  11.45;  12. -6;  13.;  14.;  15.3

三、解答題(共80分.解答題應(yīng)寫出推理、演算步驟)

16. 解:(1) 

的最小正周期,      ……………………………4分

且當(dāng)時(shí)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫成開區(qū)間不

扣分).…………6分

(2)當(dāng)時(shí),

當(dāng),即時(shí)

所以.      ……………9分

的對(duì)稱軸.      ……12分

17. 解:(1)依題意,的可能取值為1,0,-1      ………1分

的分布列為            …4分

1

0

p

==…………6分

(2)設(shè)表示10萬元投資乙項(xiàng)目的收益,則的分布列為……8分

2

…………10分

依題意要求…  11分

………12分   

注:只寫出扣1分

18. 解:(1)①當(dāng)直線垂直于軸時(shí),則此時(shí)直線方程為,與圓的兩個(gè)交點(diǎn)坐標(biāo)為,其距離為   滿足題意   ………1分

②若直線不垂直于軸,設(shè)其方程為,即     

設(shè)圓心到此直線的距離為,則,得  …………3分       

,,                                    

故所求直線方程為                               

綜上所述,所求直線為   …………7分                  

(2)設(shè)點(diǎn)的坐標(biāo)為),點(diǎn)坐標(biāo)為

點(diǎn)坐標(biāo)是                       …………9分

,

  即,    …………11分          

又∵,∴                     

 ∴點(diǎn)的軌跡方程是,               …………13分     

軌跡是一個(gè)焦點(diǎn)在軸上的橢圓,除去短軸端點(diǎn)。    …………14分     

19.解一:(1)證明:連結(jié)AD1,由長(zhǎng)方體的性質(zhì)可知:

AE⊥平面AD1,∴AD1是ED1在

平面AD1內(nèi)的射影。又∵AD=AA1=1, 

∴AD1⊥A1D   

∴D1E⊥A1D1(三垂線定理)        4分

(2)設(shè)AB=x,∵四邊形ADD1A是正方形,

∴小螞蟻從點(diǎn)A沿長(zhǎng)方體的表面爬到

點(diǎn)C1可能有兩種途徑,如圖甲的最短路程為

如圖乙的最短路程為

   

………………9

(3)假設(shè)存在,平面DEC的法向量,

設(shè)平面D1EC的法向量,則     

…………………12分

由題意得:

解得:(舍去)

………14分

20. 解:(1)當(dāng).…(1分)

           ……(3分)

的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為:,.

……(4分)

(2)切線的斜率為,

∴ 切線方程為.……(6分)

            所求封閉圖形面積為

.  

……(8分)

(3),     ……(9分)

            令.                         ……(10分)

列表如下:

x

(-∞,0)

0

(0,2-a)

2-a

(2-a,+ ∞)

0

+

0

極小

極大

由表可知,.           ……(12分)

設(shè)

上是增函數(shù),……(13分)

            ∴ ,即,

∴不存在實(shí)數(shù)a,使極大值為3.            ……(14)

21.解:(1)由   而

  解得A=1……………………………………2分

(2)令  

當(dāng)n=1時(shí),a1=S1=2,當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n

綜合之:an=2n…………………………………………6分

由題意

∴數(shù)列{cn+1}是為公比,以為首項(xiàng)的等比數(shù)列。

………………………9分

(3)當(dāng)

………………………11分

當(dāng)

………13分

綜合之:

………14分

 

 


同步練習(xí)冊(cè)答案