題目列表(包括答案和解析)
(12分)設是的反函數,
(Ⅰ)求.
(Ⅱ)當時,恒有成立,求的取值范圍.
(Ⅲ)當時,試比較與的大小,并說明理由.
已知的反函數是,若的圖像過(,)則的值為 ( )
A. B. C. D.
函數是奇函數且過點(—1,3),函數的反函數,則的圖像必過點 ( )
A.(—5,1) B.(—3,3) C.(—3,1) D.(—5,3)
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
選項
A
B
B
D
B
D
C
A
B
C
A
D
二、填空題
13、(-¥,-1)È(2,+¥) 14 、2n ? 1 15、45 16、 17、0.94 18、
三、解答題
19、解: 設等比數列{an}的公比為q, 則q≠0, a2= = , a4=a3q=2q
所以 + 2q= , 解得q1= , q2= 3,
當q1=, a1=18.所以 an=18×()n-1= = 2×33-n.
當q=3時, a1= , 所以an=×3n-1=2×3n-3
20、解:(1)將函數解析式變形為
(2)方程f(x)=5的解分別是 和 , 由于f(x)在(-∞,-1]和[2,5]上單調遞減,在[-1,2]和[5,+∞)上單調遞增,因此
.
由于
21、解:(1)當a=2時,A=(2,7),B=(4,5)∴ AB=(4,5)
(2)∵ B=(
當a<時,A=(
當a=時,A=,使BA的a不存在;
當a>時,A=(2,
綜上可知,使BA的實數a的取值范圍為[1,3]∪{-1}
22、解:(Ⅰ)求導得。
由于 的圖像與直線相切于點,
所以,即:
1
3
(Ⅱ)由得:
令f′(x)>0,解得 x<-1或x>3;又令f′(x)< 0,解得 -1<x<3.
故當x(, -1)時,f(x)是增函數,當 x(3,)時,f(x)也是增函數,
但當x(-1 ,3)時,f(x)是減函數.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com