題目列表(包括答案和解析)
設(shè)個(gè)不全相等的正數(shù)依次圍成一個(gè)圓圈。
(Ⅰ)若,且是公差為的等差數(shù)列,而是公比為的等比數(shù)列;數(shù)列的前項(xiàng)和滿(mǎn)足:,求通項(xiàng);
(Ⅱ)若每個(gè)數(shù)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:。
設(shè)個(gè)不全相等的正數(shù)依次圍成一個(gè)圓圈.
(Ⅰ)若,且是公差為的等差數(shù)列,而是公比為的等比數(shù)列;數(shù)列的前項(xiàng)和滿(mǎn)足:,求通項(xiàng);
(Ⅱ)若每個(gè)數(shù)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:;
已知,且方程有兩個(gè)不同的正根,其中一根是另一根的倍,記等差數(shù)列、的前項(xiàng)和分別為,且()。
(1)若,求的最大值;
(2)若,數(shù)列的公差為3,試問(wèn)在數(shù)列與中是否存在相等的項(xiàng),若存在,求出由這些相等項(xiàng)從小到大排列得到的數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)若,數(shù)列的公差為3,且,.
試證明:.
已知,且方程有兩個(gè)不同的正根,其中一根是另一根的倍,記等差數(shù)列、的前項(xiàng)和分別為,且()。
(1)若,求的最大值;
(2)若,數(shù)列的公差為3,試問(wèn)在數(shù)列與中是否存在相等的項(xiàng),若存在,求出由這些相等項(xiàng)從小到大排列得到的數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)若,數(shù)列的公差為3,且,.
試證明:.
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
C
B
A
D
B
A
A
C
C
D
D
12.提示:由于是中點(diǎn),中,,,
所以,所以
二、填空題
13. 14. 52 15. 16. 18
16.提示:由可得,則,所以,所以,,所以;當(dāng)且僅當(dāng)時(shí)成立
三、解答題
17.解:由
(3分)
(6分)
(2)由(1)知 (8分)
(10分)
(13分)
18.解:, (2分)
由,得 (4分)
則 (5分)
由于,于是有:
(1)當(dāng)時(shí),不等式的解集為 (8分)
(2)當(dāng)時(shí),不等式的解集為 (11分)
(3)當(dāng)時(shí),不等式的解集為 (13分)
19.解:(Ⅰ)由成等差數(shù)列,
得, (2分)
即 (5分)
(Ⅱ) (7分)
∵ (9分)
∵ (11分)
∴ (12分)
20.解:(1)由題, (2分)
等差數(shù)列的公差 (4分)
(5分)
(2),
令 ①
② (7分)
則②-①可得:
(9分)
而 (11分)
(12分)
21.解:(1)由為奇函數(shù),則,所以,得: (3分)
(2)由(1)可知 (5分)
又,
所以 (7分)
(3)由得:
則 (8分)
令
下求:令, 由于
則 (10分)
當(dāng)時(shí),與均遞增,所以遞增,
所以當(dāng)時(shí)取最大值為 所以 (12分)
22.解:(Ⅰ)∴ (1分)
當(dāng)時(shí),
,即是等比數(shù)列. (3分)
∴; (4分)
(Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,
則有而
故,解得,
再將代入得成立,
所以. (8分)
(III)證明:由(Ⅱ)知,所以
,
由得
所以,
從而
. (12分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com