題目列表(包括答案和解析)
將數(shù)列{an}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
a1
a2 a3
a4 a5 a6
a7 a8 a9 a10
……
記表中的第一列數(shù)a1,a2,a4,a7,…構(gòu)成的數(shù)列為{bn},b1=a1=1. Sn為數(shù)列{bn}的前n項和,且滿足=1(n≥2).
(Ⅰ)證明數(shù)列{}成等差數(shù)列,并求數(shù)列{bn}的通項公式;
(Ⅱ)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個正數(shù).當(dāng)時,求上表中第k(k≥3)行所有項的和.
設(shè)數(shù)列{an}滿足a1=a, an+1=can+1-c, N*,其中a,c為實數(shù),且c 0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)N*,求數(shù)列{bn}的前n項和Sn;
(Ⅲ)若0<an<1對任意N*成立,證明0<c1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)求數(shù)列{bn}的前n項和Sn;
(Ⅲ)若0<an<1對任意N*成立,證明0<c1.
已知數(shù)列{an}、{bn}、{cn}的通項公式滿足bn=an+1-an,cn=bn+1-bn(n∈N+),若數(shù)列{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若數(shù)列{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列?
(1)試寫出滿足條件a1=1,b1=1,cn=1(n∈N+)的二階等差數(shù)列{an}的前五項;
(2)求滿足條件(1)的二階等差數(shù)列{an}的通項公式an;
(3)若數(shù)列{an}首項a1=2,且滿足cn-bn+1+3an=-2n+1(n∈N+),求數(shù)列{an}的通項公式
(12分)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點()(nN*)在函數(shù)y=x2+1的圖象上。
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=(n∈N*),求數(shù)列{bn}的前n項和。
一、選擇題:BADBD CCCCA BB
二、填空題:13. 14.-80 15.-4或-26 16.―
三、解答題
17.(本小題滿分10分)
解:(1) …………………………4分
又 ……………………6分
(2)
(當(dāng)且僅當(dāng)a=c時取到等號)
,的面積的最大值為
18.(本小題滿分12分)解:(1)甲取得的3個全是白球,則必勝,其概率為
甲取得2個白球獲勝是乙取得1個白球3個黑球或4個黑球的情況下發(fā)生的,其概率為
甲取1 個白球獲勝是在乙取得4 個黑球的情況下發(fā)生的,其概率為 由于這三個事件是互斥的,所以甲獲勝的概率為 (2)對于平局的情況,只有甲取1白2黑而乙取1白3黑或甲取2白1黑而乙取2白2黑時才發(fā)生,前者的概率為
后者的概率為 所以甲乙成平局的概率為 19.(本小題滿分12分)
(1)證明:取中點,連接、.∵△是等邊三角形,∴⊥,
又平面⊥平面,∴⊥平面,∴在平面內(nèi)射影是,∵=2,,,,
∴△∽△,∴.又°,∴°,∴°,∴⊥,由三垂線定理知⊥
(2)解:由⊥,⊥得是二面角的平面角
在Rt△中,,,∴, °,∴二面角的大小是45°
(3)解:設(shè)到平面的距離距離是,則,
,,
.又,,
∴=,∴點到平面的距離距離是
20.(本小題滿分12分)解:(1)因為;故 當(dāng)時;;當(dāng)時,;滿足上式;所以;
又因為,所以數(shù)列為等差數(shù)列;
由,,故;所以公差;
所以:; …………5分
(2) ……… 6分
∴ …8分 由于 ∴單調(diào)遞增 ∴ 得 ∴ ………10分
21.(1) 由題意得
令由此可知
-1
3
+
0
-
0
+
ㄊ
極大值
ㄋ
極小值-9
ㄊ
時取極大值
(2)上是減函數(shù)
上恒成立
作出不等式組表示的平面區(qū)域如圖
當(dāng)直線經(jīng)過點時 取最小值
有最小值
22.(本小題滿分12分)
解:(1)設(shè)橢圓方程由題意知,
∴∴橢圓方程為…………………………4分
(2)證明:易求出橢圓的右焦點,…………………………………7分
設(shè)顯然直線的斜率存在,設(shè)直線的方程為代入方程并整理,得…
∴
又
,
即
∴…所以,
奪分有道:考試如何避免粗心失分
●很多高三學(xué)生都會抱怨自己太粗心,“這道題很簡單,只是我看錯了!鄙踔劣行┛忌鷷f,這次的數(shù)學(xué)模擬中有20多分是因為粗心失的分。其實這些問題并不僅僅是由于粗心,很可能是由于平時的學(xué)習(xí)不夠認真,基本功不扎實。
正確面對“粗心”失誤: 高考中基礎(chǔ)的內(nèi)容占了大多數(shù),也就是說大部分的題目都應(yīng)該在能力范圍之內(nèi),可是很少有人把自己會做的都做對了。往往高考得好的同學(xué)就是在考試中能嚴謹答題,少出失誤的同學(xué)?荚嚥粫o任何人解釋的機會,錯了就是錯了。再說白了一點,粗心也是自己能力不夠的表現(xiàn)。 所以考生在平時復(fù)習(xí)時就要重視這種問題。應(yīng)該分析為什么會看錯,是什么誤導(dǎo)了自己,以后怎么才能避免。不要只關(guān)心答案正確與否,而不分析思考的過程和方法。因為答案并不是平時復(fù)習(xí)的目的,如何正確地導(dǎo)向答案才是平時練習(xí)中需要知道的。 嚴謹?shù)膽B(tài)度還體現(xiàn)在書寫是否規(guī)范上。有經(jīng)驗的老師和同學(xué)部知道,書寫的規(guī)范與否,直接關(guān)系到考分的高低。特別是主觀題,會做甚至是做對了答案,也不一定在這道題上得滿分,原因就在于書寫不規(guī)范,缺少必要的步驟。筆者建議同學(xué)們可以參考往年高考試題的標準答案,其中有很嚴謹?shù)慕忸}步驟和書寫方式。這是我們需要掌握的。
“粗心”失分的三大原因
一是審題不清。有些同學(xué)在考試時發(fā)現(xiàn)某道題目與做多的某題類似,頓時興奮,還沒讀完題目,或者還沒充分掘出題目的隱含條件就急忙答題,而事實上,該題與以前的題目只是相似而己,有著本質(zhì)的區(qū)別,答案自然是南轅北轍。只有讀懂讀正確了題目,才有可能得到正確的分析過程.怎么讀好題目呢?我的經(jīng)歷告訴我,必須一個字一個字的讀,千萬不要遺漏,特別是數(shù)學(xué)符號,還有負號看漏了、單位弄混了、存在和任意混了、正整數(shù)條件看掉了等,所以,考試中千萬不要在“審題”這個環(huán)節(jié)上省時間,審題審?fù)噶,解題自然快而順手,仔細讀完一道題目或許只多花了幾分鐘,但如果審錯了題,損失的可不僅是時間,還有分數(shù)。
審題要注意根據(jù)題目中的有關(guān)特征去聯(lián)想,挖掘隱含條件,準確地找出題目的關(guān)鍵詞與關(guān)鍵數(shù)據(jù),從中獲取盡可能多的信息,找有效的解題線索。
二是運算不認真: 很多同學(xué)會說自己的難題都對了,簡單的題目反倒錯了。事實上,這跟答一題的態(tài)度有關(guān)。在遇到難題的時候,往往會對題目給予足夠重視,全神貫注、專心致志地去解答,答題過程、步驟也比較詳盡。計算過程,千萬不要跳躍某一步驟(除非你有萬無一失的把握),注意,這些內(nèi)容一般是在草稿紙上完成的,最后在解答過程中的書寫一般不要寫計算過程.所以你一定要把這些過程寫得明明白白,這為你回過頭來檢查提供的高效率高質(zhì)量的保障.在解簡單題目的時候,更不能掉以輕心,要穩(wěn)、要準,盡量不要花時間回頭檢查做二遍題,步驟也盡量不要省略不要跳,結(jié)果錯了一步也不容易發(fā)現(xiàn),導(dǎo)致最后答題失誤。
這種現(xiàn)象也是平時學(xué)習(xí)不塌實的表現(xiàn)。平時不重視基礎(chǔ)題的復(fù)習(xí),好大喜功,專做難題、怪題,自認為這就是能力的提高。其實,高考主要考的還是基礎(chǔ)知識,分值最多的也都在基礎(chǔ)題上,考生一定要在最后階段重點抓基礎(chǔ)題的復(fù)習(xí)。
三是臨場緊張:有些考生在考場上總怕時間不夠,前面的題目還沒做好,就想著下一道題。前面的題太簡單了過不做,太難了做不出來也跳過不做。結(jié)果,東一榔頭西一棒,慌慌張張的,哪道題目都沒有好好地做完,出錯自然難免。
這固然跟臨場發(fā)揮有關(guān),也跟平時做題習(xí)慣有關(guān)。很多同學(xué)在做題目的時候都有做一半的壞習(xí)慣,做了一個開頭,認為自己會做了,就不做完整。長此以往,答題時就容易答不完全。
同學(xué)們在平時練習(xí)的是時候,要追求質(zhì),而不是量。不要忙著做很多題,而是要保證每道題目的總確性。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com