將Q(m,n)代入得 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當(dāng)sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

(2012•福州模擬)若將有理數(shù)集Q分成兩個非空的子集M與N,且滿足M∪N=Q,M∩N=∅,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為有理數(shù)集的一個分割.試判斷,對于有理數(shù)集的任一分割(M,N),下列選項(xiàng)中,不可能成立的是( 。

查看答案和解析>>

若將有理數(shù)集Q分成兩個非空的子集M與N,且滿足M∪N=Q,M∩N=,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為有理數(shù)集的一個分割.試判斷,對于有理數(shù)集的任一分割(M,N) ,下列選項(xiàng)中,不可能成立的是

A.M沒有最大元素,N有一個最小元素    B.M沒有最大元素,N也沒有最小元素

C.M有一個最大元素,N有一個最小元素  D.M有一個最大元素,N沒有最小元素

 

查看答案和解析>>

若將有理數(shù)集Q分成兩個非空的子集M與N,且滿足M∪N=Q,M∩N=∅,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為有理數(shù)集的一個分割.試判斷,對于有理數(shù)集的任一分割(M,N),下列選項(xiàng)中,不可能成立的是( )
A.M沒有最大元素,N有一個最小元素
B.M沒有最大元素,N也沒有最小元素
C.M有一個最大元素,N有一個最小元素
D.M有一個最大元素,N沒有最小元素

查看答案和解析>>

若將有理數(shù)集Q分成兩個非空的子集M與N,且滿足M∪N=Q,M∩N=∅,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為有理數(shù)集的一個分割.試判斷,對于有理數(shù)集的任一分割(M,N),下列選項(xiàng)中,不可能成立的是


  1. A.
    M沒有最大元素,N有一個最小元素
  2. B.
    M沒有最大元素,N也沒有最小元素
  3. C.
    M有一個最大元素,N有一個最小元素
  4. D.
    M有一個最大元素,N沒有最小元素

查看答案和解析>>


同步練習(xí)冊答案