17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

      1.3.5

      第Ⅱ卷(非選擇題,共100分)

      二、填空題

      11.4   12.96  13.-3  14.(文)(理)

      15.(文)   (理)

      三、解答題

      16.解:(1)

         

         

         

         

           …………(4分)

         (1)(文科)在時(shí),

         

         

          在時(shí),為減函數(shù)

          從而的單調(diào)遞減區(qū)間為;…………(文8分)

         (2)(理科)  

          當(dāng)時(shí),由得單調(diào)遞減區(qū)間為

          同理,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

         (3)當(dāng),變換過程如下:

          1°將的圖象向右平移個(gè)單位可得函數(shù)的圖象。

          2°將所得函數(shù)圖象上每個(gè)點(diǎn)的縱坐標(biāo)擴(kuò)大為原來的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

          3°再將所得圖象向上平移一個(gè)單位,可得的圖象……(12分)

         (其它的變換方法正確相應(yīng)給分)

      17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

          底面ABC

          又AC面ABC

          AC

          又

         

          又AC面B1AC

          …………(6分)

         (2)三棱柱ABC―A1B1C1為直三棱柱

          底面ABC

          為直線B1C與平面ABC所成的角,即

          過點(diǎn)A作AM⊥BC于M,過M作MN⊥B1C于N,加結(jié)AN。

          ∴平面BB1CC1⊥平面ABC

          ∴AM⊥平面BB1C1C

          由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

          設(shè)AB=BB1=

          在Rt△B1BC中,BC=BB1

       

        

          即二面角B―B1C―A的正切值為 …………(文12分)

         (3)(理科)過點(diǎn)A1作A1H⊥平面B1AC于H,連結(jié)HC,則

          ∠A1CH為直線A1C與平面B1AC所成的角

          由

         

        在Rt………………(理12分)

      18.解:(文科)(1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和1個(gè)黑球,其概率為

        ………………………………(6分)

         (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為

        ……………………………………(12分)

         (理科)(1)設(shè)用隊(duì)獲第一且丙隊(duì)獲第二為事件A,則

        ………………………………………(6分)

         (2)可能的取值為0,3,6;則

        甲兩場(chǎng)皆輸:

        甲兩場(chǎng)只勝一場(chǎng):

        <label id="b94rz"></label>

        0

        3

        6

        P

         

          

        的分布列為

         

         

         

          …………………………(12分)

        19.解:(文科)(1)由

          函數(shù)的定義域?yàn)椋ǎ?,1)

          又

          

          …………………………………(6分)

           (2)任取、

          

          

          

          又

          ……(13分)

           (理科)(1)由

          

        又由函數(shù)

          當(dāng)且僅當(dāng)

          

          綜上…………………………………………………(6分)

           (2)

          

        ②令

        綜上所述實(shí)數(shù)m的取值范圍為……………(13分)

        20.解:(1)的解集有且只有一個(gè)元素

          

          又由

          

          當(dāng)

          當(dāng)

             …………………………………(文6分,理5分)

           (2)         ①

            ②

        由①-②得

        …………………………………………(文13分,理10分)

           (3)(理科)由題設(shè)

               

               綜上,得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.……………………(理13分)

        21.解(1)

         ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿足題意

        當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

        整理得

         

        綜上可知:恒有.………………………………(文13分,理9分)

         


        同步練習(xí)冊(cè)答案
        <span id="b94rz"><strong id="b94rz"><option id="b94rz"></option></strong></span>