平面上的向量若向量 查看更多

 

題目列表(包括答案和解析)

平面上的向量
PA
 ,  
PB
滿足
PA
2
+
PB
2
=4,且 
PA
 • 
PB
=0
,若向量
PC
=
1
3
PA
+
2
3
PB
,則|
PC
|
的最大值為( 。

查看答案和解析>>

平面上的向量
PA
PB
滿足
PA
2
+
PB
2
=4,且
PA
PB
=0
,若向量
PC
=
1
3
PA
+
2
3
PB
,則|
PC
|

最大為
 

查看答案和解析>>

平面上的向量
MA
MB
滿足|
MA
|2+|
MB
|=4,且
MA
MB
=0
,若點C滿足
MC
=
1
3
MA
+
2
3
MB
,則|
MC
|
的最小值為
7
4
7
4

查看答案和解析>>

直角坐標(biāo)平面xOy上的兩點A(-2,0),B(2,0),若該平面上的向量
OM
=(x,y)滿足:|
MA
|+|
MB
|=10,則向量的終點M(x,y)的軌跡方程為
x2
25
+
y2
21
=1
x2
25
+
y2
21
=1

查看答案和解析>>

(08年長沙一中一模理)平面上的向量滿足若向量的最大值是    

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

      <rp id="p8ngi"></rp>

    1. <form id="p8ngi"></form>

      1.3.5

      第Ⅱ卷(非選擇題,共100分)

      二、填空題

      11.4   12.96  13.-3  14.(文)(理)

      15.(文)   (理)

      三、解答題

      16.解:(1)

         

         

         

         

           …………(4分)

         (1)(文科)在時,

         

         

          在時,為減函數(shù)

          從而的單調(diào)遞減區(qū)間為;…………(文8分)

         (2)(理科)  

          當(dāng)時,由得單調(diào)遞減區(qū)間為

          同理,當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

         (3)當(dāng),變換過程如下:

          1°將的圖象向右平移個單位可得函數(shù)的圖象。

          2°將所得函數(shù)圖象上每個點的縱坐標(biāo)擴大為原來的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

          3°再將所得圖象向上平移一個單位,可得的圖象……(12分)

         (其它的變換方法正確相應(yīng)給分)

      17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

          底面ABC

          又AC面ABC

          AC

          又

         

          又AC面B1AC

          …………(6分)

         (2)三棱柱ABC―A1B1C1為直三棱柱

          底面ABC

          為直線B1C與平面ABC所成的角,即

          過點A作AM⊥BC于M,過M作MN⊥B1C于N,加結(jié)AN。

          ∴平面BB1CC1⊥平面ABC

          ∴AM⊥平面BB1C1C

          由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

          設(shè)AB=BB1=

          在Rt△B1BC中,BC=BB1

       

        

          即二面角B―B1C―A的正切值為 …………(文12分)

         (3)(理科)過點A1作A1H⊥平面B1AC于H,連結(jié)HC,則

          ∠A1CH為直線A1C與平面B1AC所成的角

          由

         

        在Rt………………(理12分)

      18.解:(文科)(1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和1個黑球,其概率為

        ………………………………(6分)

         (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5次獨立重復(fù)試難,故所求概率為

        ……………………………………(12分)

         (理科)(1)設(shè)用隊獲第一且丙隊獲第二為事件A,則

        ………………………………………(6分)

         (2)可能的取值為0,3,6;則

        甲兩場皆輸:

        甲兩場只勝一場:

        0

        3

        6

        P

         

          

        的分布列為

         

         

         

          …………………………(12分)

        19.解:(文科)(1)由

          函數(shù)的定義域為(-1,1)

          又

          

          …………………………………(6分)

           (2)任取、

          

          

          

          又

          ……(13分)

           (理科)(1)由

          

        又由函數(shù)

          當(dāng)且僅當(dāng)

          

          綜上…………………………………………………(6分)

           (2)

          

        ②令

        綜上所述實數(shù)m的取值范圍為……………(13分)

        20.解:(1)的解集有且只有一個元素

          

          又由

          

          當(dāng)

          當(dāng)

             …………………………………(文6分,理5分)

           (2)         ①

            ②

        由①-②得

        …………………………………………(文13分,理10分)

           (3)(理科)由題設(shè)

               

               綜上,得數(shù)列共有3個變號數(shù),即變號數(shù)為3.……………………(理13分)

        21.解(1)

         ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時,顯然滿足題意

        當(dāng)AB的斜率不為0時,設(shè),AB方程為代入橢圓方程

        整理得

         

        綜上可知:恒有.………………………………(文13分,理9分)

         


        同步練習(xí)冊答案