題目列表(包括答案和解析)
(本題滿分12分) 已知函數(shù)的定義域為,對于任意正數(shù)a、b,都有,其中p是常數(shù),且.,當時,總有.
(1)求(寫成關于p的表達式);
(2)判斷上的單調性,并加以證明;
(3)解關于的不等式 .(本題滿分12分) 某漁業(yè)個體戶今年年初用96萬元購進一艘漁船用于捕撈,規(guī)定這艘漁船的使用年限至多為15年. 第一年各種費用之和為10萬元,從第二年開始包括維修費用在內,每年所需費用之和都比上一年增加3萬元. 該船每年捕撈的總收入為45萬元.
(1)該漁業(yè)個體戶從今年起,第幾年開始盈利(即總收入大于成本及所有費用的和)?
(2)在年平均利潤達到最大時,該漁業(yè)個體戶決定淘汰這艘漁船,并將船以10萬元賣出,問:此時該漁業(yè)個體戶獲得的利潤為多少萬元?
(注:上述問題中所得的年限均取整數(shù))(本題滿分12分) 設數(shù)列的前項和為,滿足(N*),令.
(1)求證:數(shù)列為等差數(shù)列; (2)求數(shù)列的通項公式.(本題滿分12分) 已知函數(shù),.
(1)求函數(shù)的值域;
(2)求滿足方程的的值.(本題滿分12分) 在九江市教研室組織的一次優(yōu)秀青年教師聯(lián)誼活動中,有一個有獎競猜的環(huán)節(jié).主持人準備了A、B兩個相互獨立的問題,并且宣布:幸運觀眾答對問題A可獲獎金1000元,答對問題B可獲獎金2000元,先答哪個題由觀眾自由選擇,但只有第一個問題答對,才能再答第二題,否則終止答題.若你被選為幸運觀眾,且假設你答對問題A、B的概率分別為、.
(1) 記先回答問題A的獎金為隨機變量, 則的取值分別是多少?
(2) 你覺得應先回答哪個問題才能使你獲得更多的獎金?請說明理由.
一、選擇題:
(1)D (2)B (3)C (4)B (5)B (6)A
(7)C (8)A (9)D (10)B (11)C (12)B
二、填空題:
(13)2 (14) (15)200 (16)②③
三、解答題
17. (1) 故函數(shù)的定義域是(-1,1). ………… 2分
(2)由,得(R),所以, …………… 5分
所求反函數(shù)為( R). ………………… 7分
(3) ==-,所以是奇函數(shù).……… 12分
18. (1)設,則. ………………… 1分
由題設可得即解得 ………………… 5分
所以. ………………… 6分
(2) ,. …… 8分
列表:
-
+
-
+
………………… 11分
由表可得:函數(shù)的單調遞增區(qū)間為, ……………… 12分
19.(1)證明:設,且,
則,且. ………………… 2分
∵在上是增函數(shù),∴. ………………… 4分
又為奇函數(shù),∴,
∴, 即在上也是增函數(shù). ……………… 6分
(2)∵函數(shù)在和上是增函數(shù),且在R上是奇函數(shù),
∴在上是增函數(shù). …………………… 7分
于是
. ………… 10分
∵當時,的最大值為,
∴當時,不等式恒成立. ……………… 12分
20. ∵AB=x, ∴AD=12-x. ………………1分
又,于是. ………………3分
由勾股定理得 整理得 …………5分
因此的面積 . ……7分
由 得 ………………8分
∴
∴. ………………10分
當且僅當時,即當時,S有最大值 ……11分
答:當時,的面積有最大值 ………………12分
21. (1) h (x) …………………5分
(2) 當x≠1時, h(x)= =x-1++2, ………………6分
若 x > 1時, 則 h (x)≥4,其中等號當 x = 2時成立 ………………8分
若x<1時, 則h (x) ≤ 0,其中等號當 x = 0時成立 ………………10分
∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞) ………………12分
22. (1)
切線PQ的方程 ………2分
(2)令y=0得 ………4分
由解得 . ………6分
又0<t<6, ∴4<t<6, ………7分
g (t)在(m, n)上單調遞減,故(m, n) ………8分
(3)當在(0,4)上單調遞增,
∴P的橫坐標的取值范圍為. ………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com