8.已知函數(shù)則的值是 ▲ . 查看更多

 

題目列表(包括答案和解析)

2008.11

 

一、填空題

    ⒉     ⒊-i      ⒋     ⒌

       ⒎     ⒏      ⒐    ⒑

⒒14         ⒓      ⒔   ⒕m>

二、解答題

⒖解:(Ⅰ)

             ……(4分)

 ∵函數(shù)的單調增區(qū)間為,

,∴

∴函數(shù)f(x)的單調遞增區(qū)間為,……(8分)

(Ⅱ)當時,,∴

∴函數(shù)f(x)的值域為……(14分)

⒗解:(Ⅰ) ∵DC⊥平面ABC,EB⊥平面ABC

∴DC//EB,又∵DC平面ABE,EB平面ABE,∴DC∥平面ABE……(4分)

(Ⅱ)∵DC⊥平面ABC,∴DC⊥AF,又∵AF⊥BC,∴AF⊥平面BCDE……(8分)

(Ⅲ)由(2)知AF⊥平面BCDE,∴AF⊥EF,在三角形DEF中,由計算知DF⊥EF,

∴EF⊥平面AFD,又EF平面AFE,∴平面AFD⊥平面AFE.……(14分)

⒘解:根據(jù)題意得,BC=km,BD=12km,CD=12km,∠CAB=75°,

設∠ACD=α,∠CDB=β

在△CDB中,由余弦定理得

,所以

于是…………(7分)

在△ACD中,由正弦定理得

答:此人還得走km到達A城……(14分)

⒙解:(1)  因x=-1是的一個極值點

即 2+b-1=0

∴b= -1,經(jīng)檢驗,適合題意,所以b= -1.……(5分)

(2)  

>0

>0

∴x>

∴函數(shù)的單調增區(qū)間為……(10分)

(3)對時,f(x)>c-4x恒成立

∴即對時,f(x) +4x >c恒成立

=

==0

(舍)

上單調遞減,在上單調遞增。

在x=時取最小值5-

∴C<5-……………………………………(16分)

⒚解:(Ⅰ)∵為偶函數(shù),∴,∴,∴

  ∴,∴函數(shù)為奇函數(shù);……(4分)

(Ⅱ)⑴由得方程有不等實根

     ∴△

      又的對稱軸

      故在(-1,1)上是單調函數(shù)……………………………………………(10分)

是方程(*)的根,∴

,同理

同理

要使,只需,∴

,解集為

的取值范圍……………………(16分)

⒛(Ⅰ)證明:

由條件可得,所以……(4分)

 (Ⅱ)解:因為bn+1=(-1)n+1[an+1-3(n-1)+9]=(-1)n+1(an-2n+6)

=(-1)n?(an-3n+9)=-bn

又b1=,所以

當λ=-6時,bn=0(n∈N+),此時{bn}不是等比數(shù)列,

當λ≠-6時,b1=≠0,由上可知bn≠0,∴(n∈N+).

故當λ≠-6時,數(shù)列{bn}是以-(λ+6)為首項,-為公比的等比數(shù)列.……(10分)

(Ⅲ)由(Ⅱ)知,當λ=-6,bn=0,Sn=0,不滿足題目要求.

∴λ≠-6,故知bn= -(λ+6)?(-)n-1,于是可得

當n為正奇數(shù)時,1<f(n)

∴f(n)的最大值為f(1)=,f(n)的最小值為f(2)= ,

于是,由①式得a<-(λ+6)<

當a<b3a時,由-b-63a-6,不存在實數(shù)滿足題目要求;

當b>3a時存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b,

且λ的取值范圍是(-b-6, -3a-6)…………(16分)


同步練習冊答案